Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Power and Energy

Experimental Study Of Shoot-Through Control Methods For Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire May 2011

Experimental Study Of Shoot-Through Control Methods For Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper presents a simulation and experimental comparative analysis of the Z-source inverter (ZSI) with four different shoot-through (ST) control methods, namely: the simple boost control, the maximum boost control, the maximum constant boost control and the modified space vector modulation boost control methods. A review of these methods is presented with a summary of all expressions. A prototype of a 30 kW ZSI is designed and implemented. The eZdsp™ F2808 evaluation board is used for the realization of the shoot-through control methods and the real time workshop (RTW) is used for automatic code generation. The paper compares between the …


Control Of A Bidirectional Z-Source Inverter Forelectric Vehicle Applications In Different Operation Modes, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Mar 2011

Control Of A Bidirectional Z-Source Inverter Forelectric Vehicle Applications In Different Operation Modes, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI …


A Dsp Based Dual Loop Digital Controller Design And Implementation Of A High Power Boost Converter For Hybrid Electric Vehicles Applications, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Feb 2011

A Dsp Based Dual Loop Digital Controller Design And Implementation Of A High Power Boost Converter For Hybrid Electric Vehicles Applications, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

This paper presents a DSP based direct digital control design and implementation for a high power boost converter. A single loop and dual loop voltage control are digitally implemented and compared. The real time workshop (RTW) is used for automatic real-time code generation. Experimental results of a 20 kW boost converter based on the TMS320F2808 DSP during reference voltage changes, input voltage changes, and load disturbances are presented. The results show that the dual loop control achieves better steady state and transient performance than the single loop control. In addition, the experimental results validate the effectiveness of using the RTW …


Design And Implementation Of A Dsp Based Dual-Loop Capacitor Voltage Control Of The Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire Feb 2011

Design And Implementation Of A Dsp Based Dual-Loop Capacitor Voltage Control Of The Z-Source Inverter, Omar Ellabban, Joeri Van Mierlo, Philippe Lataire

Omar Ellabban

The Z-source inverter is a recently proposed single stage converter topology with buck-boost capabilities. This paper proposes a dual-loop capacitor voltage control, with outer voltage loop and inner current loop, of the Z-source inverter (ZSI). Both controller are designed based on a third order small signal model of the ZSI using the direct digital design method. Real-time control algorithm is implemented using DSP linked with MATLAB real time workshop (RTW) as rapid prototyping tool. The feasibility of the proposed dual loop control method has been verified by the simulation and experimental results.