Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

Bulk heterojunction

Articles 1 - 2 of 2

Full-Text Articles in Power and Energy

Can Morphology Tailoring Improve The Open Circuit Voltage Of Organic Solar Cells?, Biswajit Ray, M. S. Lundstrom, Muhammad A. Alam Jan 2012

Can Morphology Tailoring Improve The Open Circuit Voltage Of Organic Solar Cells?, Biswajit Ray, M. S. Lundstrom, Muhammad A. Alam

Birck and NCN Publications

While the effect of interfacial morphology on the short circuit current (ISC) of organic photovoltaic devices (OPVs) is well known, its impact on open circuit voltage (VOC) and fill-factor (FF) are less clear. Since the output power of a solar cell Pout = ISCVOCFF, such understanding is critical for designing high-performance, morphology-engineered OPVs. In this letter, we provide an explicit analytical proof that any effort to radically improve VOC by tailoring bulk heterojunction morphology is futile, because any increase in ISC due to larger interface area is counterbalanced by corresponding increase …


A Compact Physical Model For Morphology Induced Intrinsic Degradation Of Polymer Based Bulk Heterojunction Solar Cell, Biswajit Ray, Muhammad A. Alam Jan 2011

A Compact Physical Model For Morphology Induced Intrinsic Degradation Of Polymer Based Bulk Heterojunction Solar Cell, Biswajit Ray, Muhammad A. Alam

Birck and NCN Publications

The gradual loss of efficiency during field operation poses a fundamental challenge for economic viability of any solar cell technology. Well known examples include light-induced degradation in Si-based cell (Staebler-Wronski effect), Cu diffusion in thin film (CIGS) cell, hot-spot degradation in series connected modules, etc. Here we develop a compact model for an intrinsic degradation concern for bulk heterojunction type organic photovoltaic (BH-OPV) cells that involve continued (thermal) phase segregation of the donor-acceptor molecules leading to characteristic loss of efficiency and performance. Our approach interprets a number of BH-OPV device degradation measurements within a common framework and suggests/rationalizes intuitive routes …