Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

Shock Wave Effects

Discipline
Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Power and Energy

Longitudinal Shock Wave Depolarization Of Pb(Zr₅₂Ti₄₈)O₃ Polycrystalline Ferroelectrics And Their Utilization In Explosive Pulsed Power, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Henryk Temkin, Larry L. Altgilbers, Allen H. Stults Jan 2006

Longitudinal Shock Wave Depolarization Of Pb(Zr₅₂Ti₄₈)O₃ Polycrystalline Ferroelectrics And Their Utilization In Explosive Pulsed Power, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Henryk Temkin, Larry L. Altgilbers, Allen H. Stults

Mining Engineering Faculty Research & Creative Works

A poled lead zirconate titanate Pb(Zr52Ti48)O3 (PZT) polycrystalline piezoelectric ceramic energy-carrying element of a compact explosive-driven power generator was subjected to a longitudinal explosive shock wave (the wave front traveled along the polarization vector P0). The shock compression of the element at pressures of 1.5-3.8 GPa caused almost complete depolarization of the sample. Shock wave velocity in the PZT was determined to be 3.94 ± 0.27 km/s. The electric charge stored in a ferroelectric, due to its remnant polarization, is released during a short time interval and can be transformed into pulsed power. Compact explosive-driven power sources utilizing longitudinal shock …


Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers Jan 2004

Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers

Mining Engineering Faculty Research & Creative Works

The design and performance of a compact explosive-driven high-voltage primary power generator is presented. The generator utilizes a fundamental physical effect—depolarization of ferroelectric materials under longitudinal shock wave impact, when the shock wave is initiated along the polarization vector P. These primary power sources, containing energy-carrying elements made of lead zirconate titanate poled piezoelectric ceramics, with the volume from 0.35 to 3.3 cm3, are capable of producing pulses of high voltage with amplitudes up to 21.4 kV. The amplitude and full width at half-maximum of the high-voltage pulses are directly proportional to the thickness of the energy-carrying element, with coefficients …