Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Power and Energy

Coordinated Control For Dc Energy Hubs Involving Ders, Evs, And Subway Systems, Rohama Ahmad Jan 2021

Coordinated Control For Dc Energy Hubs Involving Ders, Evs, And Subway Systems, Rohama Ahmad

Dissertations and Theses

No abstract provided.


Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu Jan 2021

Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu

Dissertations and Theses

Today’s global energy challenges pose an urgent need to electrify transportation and better store intermittent renewable energy sources (e.g., solar and wind energy). For such large-scale battery applications, aluminum batteries are a promising “beyond lithium-ion” technology due to the high volumetric capacity, earth abundance, low-cost, and inherent safety of aluminum metal. However, there are very few compatible positive electrode materials that exhibit high energy density and cycling stability, in part due to the challenges of electrochemically intercalating highly charged Al3+ cations. Recently, graphite has been demonstrated as a promising positive electrode material in non-aqueous rechargeable aluminum batteries, which store …


Control Hierarchies For Critical Infrastructures In Smart Grid Using Reinforcement Learning And Metaheuristic Optimization, Oindrilla Dutta Jan 2021

Control Hierarchies For Critical Infrastructures In Smart Grid Using Reinforcement Learning And Metaheuristic Optimization, Oindrilla Dutta

Dissertations and Theses

The objective of this work is to develop robust control framework for interdependent smart grid infrastructures comprising two critical infrastructures: 1) power distribution networks that are characterized by high penetration of distributed energy resources (DERs), and 2) DC-rail transportation systems in congested urban areas. The rising integration of DERs into the power grid is causing a paradigm shift in the power distribution network. Consequently, new control challenges for efficient and robust operation of the power grid have surfaced. For instance, the intermittency of renewable energy resources necessitates coordinated control of power flows, voltage regulators, and protection device settings of the …


Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim Jan 2021

Voltage Security Optimization For Power Transmission Systems, Tamer Ibrahim

Dissertations and Theses

This project proposes an optimization approach for day-ahead reactive power planning to ensure voltage security in transmission networks. The problem is formulated as a voltage-secure multi-period optimal reactive power dispatch (MP-ORPD) problem. The optimization approach searches for optimal set-points of dynamic and static reactive power (var) resources. Specifically, the output includes set-points for switching shunts, transformer taps, and voltage magnitudes at the regulated buses. The primary goal is to maximize the dynamic reactive power reserve of the system, by minimizing the reactive power supplied by synchronous generators. The secondary goal is to minimize changes in the settings of switching shunts …


Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …