Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Power and Energy

Designing Harvesting And Hauling Cost Models For Energy Cane Production For Biorefineries, Prabodh Illukpitiya, Firuz Yuldashev, Kabirat Nasiru Jul 2022

Designing Harvesting And Hauling Cost Models For Energy Cane Production For Biorefineries, Prabodh Illukpitiya, Firuz Yuldashev, Kabirat Nasiru

Agricultural and Environmental Sciences Faculty Research

The harvesting and hauling operations of bioenergy feedstock is an important area in biofuel production. Production costs can be minimized by maintaining optimal machinery units for these operations. The objective of this study is to design an optimal harvesting unit for bioenergy refinery and estimate harvesting and hauling costs of energy cane. A biorefinery with the annual capacity of processing twenty-five million imp. gallons of ethanol were considered. Given the efficiency of harvesting, a two-row soldier system was considered. Considering the year-round supply of energy cane to the refinery, the optimal machinery unit was designed, and the combined operation costs …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor May 2022

Improving The Biocompatibility Of The Bio-Inorganic Interface For Enhanced Photosystem I-Based Biophotovoltaic Device Performance, Alexandra H. Teodor

Doctoral Dissertations

The world’s energy demands are projected to increase by nearly 50% by the year 2040, and consumption of carbon-based fuels continues to release greenhouse gases such as carbon dioxide and methane into the atmosphere. This has been causally linked with climate change and increased extreme weather events, which has been further linked to adverse health outcomes and negative effects on biodiversity, food security, and increased disease transmission. Clearly, there is a need for a sustainable, carbon-free, and cost-effective method of energy production to meet growing energy production demands. The sun irradiates Earth’s surface annually with ~80,000 terawatts (TW), making solar …