Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Power and Energy

Energy-Based Analysis Of Utility Scale Hybrid Power Systems, Kwame Agyenim-Boateng Dec 2011

Energy-Based Analysis Of Utility Scale Hybrid Power Systems, Kwame Agyenim-Boateng

UNLV Theses, Dissertations, Professional Papers, and Capstones

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources' transient behavior and the impact this would have on the operation of the grid. Among the methods cited for addressing some of those concerns are exploring the complementary nature of solar and wind power generation, and through the use of supplemental energy storage. While the technology for the latter has not been proven to be economical on a large scale at the present time, some assessments of what magnitude is required can be made. An energy-based analysis of utility …


Morphology Changes In Pcpdtbt:Pcbm And P3ht:Pcpdtbt:Pcbm And Its Effect On Polymer Solar Cell Performance, Galen David Cauble Aug 2011

Morphology Changes In Pcpdtbt:Pcbm And P3ht:Pcpdtbt:Pcbm And Its Effect On Polymer Solar Cell Performance, Galen David Cauble

Physics

Polymer solar cell morphology is sensitive to both heat and time. By thermally annealing polymer solar cells the morphology of the devices can be altered causing immediate changes in device performance. Blending PCPDTBT:PCBM with P3HT:PCPDTBT combines the absorption characteristics of each to create a more even absorption spectrum. Subjecting PCPDTBT:PCBM, and P3HT:PCPDTBT:PCBM polymer solar cells to thermal annealing as well as recording device performance through time has shown that P3HT:PCPDTBT:PCBM devices react positively to thermal annealing (increasing from 0.8% to 1.4%) while PCPDTBT:PCBM devices have varied reactions. Furthermore, the P3HT:PCPDTBT:PCBM devices have achieved efficiencies of 1.6% in AM 1.5 compared …


Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer Jul 2011

Improving The Efficiency Of Organic Solar Cells By Varying The Material Concentration In The Photoactive Layer, Kevin Anthony Latimer

Electrical & Computer Engineering Theses & Dissertations

Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies.

When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is …


Commercial Program Development For A Ground Loop Geothermal System: Energy Loads, Gui, Turbulent Flow, Heat Pump Model And Grid Study, Paul A. Gross Ii Jan 2011

Commercial Program Development For A Ground Loop Geothermal System: Energy Loads, Gui, Turbulent Flow, Heat Pump Model And Grid Study, Paul A. Gross Ii

Browse all Theses and Dissertations

The use of the earth's thermal energy to heat and cool building space is nothing new; however, the heat transfer approximations used in modeling geothermal systems, leave uncertainty and lead to over sizing. The present work is part of a Wright State effort to improve the computer modeling tools used to simulate ground loop geothermal heating and cooling systems. The modern computer processor has equipped us with the computation speed to use a finite volume technique to solve the unsteady heat equation with hourly time steps for multi-year analyses in multiple spatial dimensions. Thus we feel there is more need …


Commercial Program Development For A Ground Loop Geothermal System: G-Functions, Commercial Codes And 3d Grid, Boundary And Property Extension, Kyle L. Hughes Jan 2011

Commercial Program Development For A Ground Loop Geothermal System: G-Functions, Commercial Codes And 3d Grid, Boundary And Property Extension, Kyle L. Hughes

Browse all Theses and Dissertations

The rise in fossil fuel consumption and green house gas emissions has driven the need for alternative energy and energy efficiency. At the same time, ground loop heat exchangers (GLHE) have proven capable of producing large reductions in energy use while meeting peak demands. However, the initial cost of GLHEs sometimes makes this alternative energy source unattractive to the costumer. GLHE installers use commercial programs to determine the length of pipe needed for the system, which is a large fraction of the initial cost. These commercial programs use approximate methods to determine the length of pipe mainly due to their …


Ab Initio Simulations Of Graphene-Based Nanosensor For Detecting No2 And Li, Ahmed Jama Hassan Jan 2011

Ab Initio Simulations Of Graphene-Based Nanosensor For Detecting No2 And Li, Ahmed Jama Hassan

Browse all Theses and Dissertations

Nanosensors, i.e., sensors based on nanomaterials, have the potential of superior performance owing to their size effect, and can have significant effects on detection of pollutants in the environment. Various nanowires have been used in this context. Here we investigate the possibility of NO2 and Li detection using the quantum conductance change in graphene nanoribbon. Quantum conductance modification in graphene nanoribbon upon NO2/Li adsorption was calculated using ab initio methods. The optimized structures of the adsorbed NO2 indicated two different geometries where either nitrogen or oxygen was closer to the graphene lattice. The former resulted in charge transfer from NO2 …