Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Power and Energy

Design And Implementation Of Ccny Dc Microgrid Testbed, Mahmoud Saleh, Yusef Esa, Yassine Mhandi, Werner Brandauer, Ahmed Mohamed Oct 2016

Design And Implementation Of Ccny Dc Microgrid Testbed, Mahmoud Saleh, Yusef Esa, Yassine Mhandi, Werner Brandauer, Ahmed Mohamed

Publications and Research

This paper presents the design, control, energy management, and implementation of the City College of New York (CCNY) direct current (DC) microgrid laboratory testbed. This facility was custom designed and implemented by researchers at CCNY with minimal off-the-shelf components to enable significant flexibility and reconfiguration capability. The microgrid consists of renewable energy resources, energy storage system and controllable loads, and can operate in either a grid-connected or an islanded mode. The design steps, requirements, and results of the developed testbed were discussed. Moreover, several operational scenarios were tested. The experimental results verify the applicability and flexibility of the developed microgrid …


Automatic Water Pump Controller, Alam D. Salguero, Kyle Russell Marquez Weeks Jun 2016

Automatic Water Pump Controller, Alam D. Salguero, Kyle Russell Marquez Weeks

Electrical Engineering

In countries including Indonesia, Mexico, Guatemala, and El Salvador, a city water authority supplies the clean water and pumps it into large ground-level storage tanks. A resident’s water pump then pumps the water to a water tank on top of his/her house. When the water level in the ground-level storage tank becomes too low, the pump siphons air and shuts down, requiring a resident to manually prime the water pump to get it running again. Residents struggle to monitor the water level of the tanks effectively and keep the pump running properly. To remedy the issue, the Automatic Water Pump …


Control Design Of A Single-Phase Dc/Ac Inverter For Pv Applications, Haoyan Liu May 2016

Control Design Of A Single-Phase Dc/Ac Inverter For Pv Applications, Haoyan Liu

Graduate Theses and Dissertations

This thesis presents controller designs of a 2 kVA single-phase inverter for photovoltaic (PV) applications. The demand for better controller designs is constantly rising as the renewable energy market continues to rapidly grow. Some background research has been done on solar energy, PV inverter configurations, inverter control design, and hardware component selection. Controllers are designed both for stand-alone and grid-connected modes of operation. For stand-alone inverter control, the outer control loop regulates the filter capacitor voltage. Combining the synchronous frame outer control loop with the capacitor current feedback inner control loop, the system can achieve both zero steady-state error and …


Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed Apr 2016

Impact Of Clustering Microgrids On Their Stability And Resilience During Blackouts, Mahmoud S. Saleh, Ammar Althaibani, Yusef Esa, Yassine Mhandi, Ahmed Mohamed

Publications and Research

In this paper, the impact of clustering multiple microgrids during blackouts, on their stability and supply availability, will be investigated. Microgrids have the capability of satisfying their emergency loads during blackouts. However, distributed energy resources (DERs)-dominated microgrids are affected by the uncertainty of their input energy supply, e.g. impact of solar irradiance on photovoltaic (PV) output. Moreover, an individual islanded microgrid is prone to instability issues due to large sudden load/generation changes. In order to increase the supply security, and enhance system stability, we propose to use the existing distribution grid infrastructure, if applicable, during blackouts to form microgrid clusters. …


Sensorless Rotor Position Estimation For Brushless Dc Motors, Iram G. Raza Apr 2016

Sensorless Rotor Position Estimation For Brushless Dc Motors, Iram G. Raza

Electronic Thesis and Dissertation Repository

Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand.

Among the …


Fully Decentralized Multi-Agent System For Optimal Microgrid Control, Ricardo De Azevedo Mar 2016

Fully Decentralized Multi-Agent System For Optimal Microgrid Control, Ricardo De Azevedo

FIU Electronic Theses and Dissertations

In preparation for the influx of renewable energy sources that will be added to the electrical system, flexible and adaptable control schemes are necessary to accommodate the changing infrastructure. Microgrids have been gaining much attention as the main solution to the challenges of distributed and intermittent generation, but due to their low inertia, they need fast-acting control systems in order to maintain stability. Multi-Agent Systems have been proposed as dynamic control and communication frameworks. Decentralized arrangements of agents can provide resiliency and the much-desired “plug and play” behavior. This thesis describes a control system that implements droop control and the …


Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara Jan 2016

Predictive Control Of Power Grid-Connected Energy Systems Based On Energy And Exergy Metrics, Meysam Razmara

Dissertations, Master's Theses and Master's Reports

Building and transportation sectors account for 41% and 27% of total energy consumption in the US, respectively. Designing smart controllers for Heating, Ventilation and Air-Conditioning (HVAC) systems and Internal Combustion Engines (ICEs) can play a key role in reducing energy consumption. Exergy or availability is based on the First and Second Laws of Thermodynamics and is a more precise metric to evaluate energy systems including HVAC and ICE systems. This dissertation centers on development of exergy models and design of model-based controllers based on exergy and energy metrics for grid-connected energy systems including HVAC and ICEs.

In this PhD dissertation, …