Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Western University

High-impedance fault; power system protection; unsupervised learning; deep learning; convolutional autoencoder; convolutional neural network

Articles 1 - 1 of 1

Full-Text Articles in Power and Energy

Deep Learning For High-Impedance Fault Detection: Convolutional Autoencoders, Khushwant Rai, Firouz Badrkhani Ajaei, Farnam Hojatpanah, Katarina Grolinger Jan 2021

Deep Learning For High-Impedance Fault Detection: Convolutional Autoencoders, Khushwant Rai, Firouz Badrkhani Ajaei, Farnam Hojatpanah, Katarina Grolinger

Electrical and Computer Engineering Publications

High-impedance faults (HIF) are difficult to detect because of their low current amplitude and highly diverse characteristics. In recent years, machine learning (ML) has been gaining popularity in HIF detection because ML techniques learn patterns from data and successfully detect HIFs. However, as these methods are based on supervised learning, they fail to reliably detect any scenario, fault or non-fault, not present in the training data. Consequently, this paper takes advantage of unsupervised learning and proposes a convolutional autoencoder framework for HIF detection (CAE-HIFD). Contrary to the conventional autoencoders that learn from normal behavior, the convolutional autoencoder (CAE) in CAE-HIFD …