Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

Bifunctional electrocatalyst

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Power and Energy

Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He Jul 2023

Recent Progress Of Bifunctional Electrocatalysts For Oxygen Electrodes In Unitized Regenerative Fuel Cells, Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He

Journal of Electrochemistry

Unitized regenerative fuel cells (URFCs), which oxidize hydrogen to water to generate electrical power under thefuel cells (FCs) mode and electrolyze water to hydrogen under the water electrolysis (WE) mode for recycling, areknown as clean and sustainable energy conversion devices. In contrast to the hydrogen oxidation reaction (HOR) andhydrogen evolution reaction (HER) on the hydrogen electrode side, the sluggish kinetics of oxygen reduction reaction(ORR) and oxygen evolution reaction (OER) on the oxygen electrode side requires highly efficient bifunctional oxygencatalysts. Conventional precious metal oxygen catalysts combine Pt and IrO2 with excellent ORR and OER activities toachieve bifunctional electrocatalysis performance, but …


The Rapid Preparation Of Efficient Mofeco-Based Bifunctional Electrocatalysts Via Joule Heating For Overall Water Splitting, Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang Sep 2022

The Rapid Preparation Of Efficient Mofeco-Based Bifunctional Electrocatalysts Via Joule Heating For Overall Water Splitting, Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang

Journal of Electrochemistry

Water electrolysis is an available way to obtain green hydrogen. The development of highly efficient electrocatalysts is a current research hotspot for water splitting, but it remains challenging. Herein, we demonstrate the synthesis of a robust bifunctional multi-metal electrocatalysts toward water splitting via the rapid Joule-heating conversion of metal precursors. The composition and morphology were well regulated via altering the ratio of metal precursors. In particular, the trimetal MoC/FeO/CoO/carbon cloth (CC) electrode revealed the outstanding bifunctional electrocatalytic performance due to the unique composition and large electrochemical active surface area. Typically, the MoC/FeO/CoO/CC catalyst needed low overpotentials of 121 and 268 …