Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electrical and Computer Engineering

Design Concepts Of Terahertz Quantum Cascade Lasers: Proposal For Terahertz Laser Efficiency Improvements, Tillmann Kubis, Saumitra Raj Mehrotra, Gerhard Klimeck Dec 2010

Design Concepts Of Terahertz Quantum Cascade Lasers: Proposal For Terahertz Laser Efficiency Improvements, Tillmann Kubis, Saumitra Raj Mehrotra, Gerhard Klimeck

Birck and NCN Publications

Conceptual disadvantages of typical resonant phonon terahertz quantum cascade lasers 􏰎THz-QCLs􏰍 are analyzed. Alternative designs and their combination within a concrete device proposal are discussed to improve the QCL performance. The improvements are 􏰎1􏰍 indirect pumping of the upper laser level, 􏰎2􏰍 diagonal optical transitions, 􏰎3􏰍 complete electron thermalization, and 􏰎4􏰍 materials with low effective electron masses. The nonequilibrium Green’s function method is applied to predict stationary electron transport and optical gain. The proposed THz-QCL shows a higher optical gain, a lower threshold current, and a higher operation temperature. Alloy disorder scattering can worsen the QCL performance.


Universality Of Non-Ohmic Shunt Leakage In Thin-Film Solar Cells, Sourabh Dongaonkar, Jonathan D. Servaites, Grayson M. Ford, Stephen Loser, James E. Moore, Ryan M. Gelfand, Hooman Mohseni, Hugh W. Hillhouse, Rakesh Agrawal, Mark A. Ratner, Tobin J. Marks, Mark Lundstrom, Muhammad A. Alam Dec 2010

Universality Of Non-Ohmic Shunt Leakage In Thin-Film Solar Cells, Sourabh Dongaonkar, Jonathan D. Servaites, Grayson M. Ford, Stephen Loser, James E. Moore, Ryan M. Gelfand, Hooman Mohseni, Hugh W. Hillhouse, Rakesh Agrawal, Mark A. Ratner, Tobin J. Marks, Mark Lundstrom, Muhammad A. Alam

Birck and NCN Publications

We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V< ∼ 0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (Ish), across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V = 0, (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from …


Theory Of ‘Selectivity’ Of Label-Free Nanobiosensors – A Geometro-Physical Perspective, Pradeep R. Nair, Muhammad A. Alam Jan 2010

Theory Of ‘Selectivity’ Of Label-Free Nanobiosensors – A Geometro-Physical Perspective, Pradeep R. Nair, Muhammad A. Alam

Birck and NCN Publications

Modern label-free biosensors are generally far more sensitive and require orders of magnitude less incubation time compared to their classical counterparts. However, a more important characteristic regarding the viability of this technology for applications in Genomics/Proteomics is defined by the ‘Selectivity’, i.e., the ability to concurrently and uniquely detect multiple target biomolecules in the presence of interfering species. Currently, there is no theory of Selectivity that allows optimization of competing factors and there are few experiments to probe this problem systematically. In this article, we use the elementary considerations of surface exclusion, diffusion limited transport, and void distribution function to …