Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Electrical and Computer Engineering

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla Aug 2019

Near-Field Effects On Partially Coherent Light Scattered By An Aperture, Milo W. Hyde Iv, Michael J. Havrilla

Faculty Publications

We investigate how the near field affects partially coherent light scattered from an aperture in an opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they affect spatial coherence is well documented. Here, we consider other near-field effects that might impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons. We derive the near-field statistics (in particular, cross-spectral density functions) by applying electromagnetic equivalence theorems and the Method of Moments. We …


Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari Mar 2019

A State-Of-The-Art Survey On Deep Learning Theory And Architectures, Md Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language …


Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew Feb 2019

Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Various methods exist for measuring molecular orientation, thereby providing insight into biochemical activities at nanoscale. Since fluorescence intensity and not electric field is detected, these methods are limited to measuring even-order moments of molecular orientation. However, any measurement noise, for example photon shot noise, will result in nonzero measurements of any of these even-order moments, thereby causing rotationally-free molecules to appear to be partially constrained. Here, we build a model to quantify measurement errors in rotational mobility. Our theoretical framework enables scientists to choose the optimal single-molecule orientation measurement technique for any desired measurement accuracy and photon budget.


Third-Order Optical Nonlinearity Properties Of Cdcl2-Modifed Ge–Sb–S Chalcogenide Glasses, Xiaosong Lu, Jianhui Li, Lu Yang, Runan Zhang, Yindong Zhang, Jing Ren, Aurelian Catalin Galca, Mihail Secu, Gerald Farrell, Pengfei Wang Jan 2019

Third-Order Optical Nonlinearity Properties Of Cdcl2-Modifed Ge–Sb–S Chalcogenide Glasses, Xiaosong Lu, Jianhui Li, Lu Yang, Runan Zhang, Yindong Zhang, Jing Ren, Aurelian Catalin Galca, Mihail Secu, Gerald Farrell, Pengfei Wang

Articles

We developed a new type of chalcohalide glasses with physicochemical and nonlinear optical properties that are tunable by composition. It is found that more than 60 mol.% CdCl2 heavy metal halide can be dissolved into the ternary Ge–Sb–S system and forming stable glasses. The visible-light transparency range is extended to shorter wavelengths with the addition of CdCl2, which is beneficial for the optical quality control and infra-red (IR) system alignment. The third-order optical nonlinearity (TONL) is studied using the femtosecond Z-scan method. The results show that both the nonlinear refractive index and two photon absorption co-efficient decrease with CdCl2. Benefiting …


A Twelve-Wavelength Thulium-Doped Fibre Laser Based On A Microfibre Coil Resonator Incorporating Black Phosphorus, Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Pengfei Wang Jan 2019

A Twelve-Wavelength Thulium-Doped Fibre Laser Based On A Microfibre Coil Resonator Incorporating Black Phosphorus, Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, Pengfei Wang

Articles

A novel multi-wavelength continuous Thulium-doped fibre laser incorporating a microfibre coil resonator based on black phosphorus (MCR-BP) material has been successfully fabricated and demonstrated. A twelve-wavelength spectrum with 0.54 nm channel spacing has been achieved by simply adjusting the pump source power. A single peak extinction ratio of more than 40 dB was observed. The superior performance of the MCR-BP described in this article compared to conventional MCR based fibre lasers can be attributed the inclusion of the Black Phosphorous Material. The enhanced lasing is primarily due to the twin properties of the MCR-BP device combining a comb-like filter effect …


All Fibre Q-Switched Thulium-Doped Fibre Laser Incorporating Thulium–Holmium Co-Doped Fibre As A Saturable Absorber, Shi Li, Elfed Lewis, Gerald Farrell, Ahmad Haziq Aiman Rosol, A.A. Latiff, Sulaiman Wadi Harun, Bingang Guo, Pengfei Wang Jan 2019

All Fibre Q-Switched Thulium-Doped Fibre Laser Incorporating Thulium–Holmium Co-Doped Fibre As A Saturable Absorber, Shi Li, Elfed Lewis, Gerald Farrell, Ahmad Haziq Aiman Rosol, A.A. Latiff, Sulaiman Wadi Harun, Bingang Guo, Pengfei Wang

Articles

A novel all fibre Q-switched Thulium-doped fibre laser (TDFL) is reported which includes a short length of a Thulium–Holmiumco-doped fibre (THDF) as a saturable absorber. A high repetition rate (27.26 kHz) coupled with a low pulse width (19.06μs) is obtained for single wavelength Q-switched pulse operation at an output wavelength of 1911.5 nm using a pump power of 200 mW. Increasing the pump power from 200 mW to 700 mW results in the repetition rate increasing from 27.26 kHz to 99.67 kHz and the pulse width decreasing from 19.06μs to 920 ns. The centre wavelength of the single Q-switched pulse …


Distribution Of Tm 3+ And Ni 2+ In Chalcogenide Glass Ceramics Containing Ga2s3 Nanocrystals: Influence On Photoluminescence Properties, Xiaosong Lu, Zhiqiang Lai, Jing Ren, Lukas Strizik, Tomas Wagner, Yanqiu Du, Gerald Farrell, Pengfei Wang Jan 2019

Distribution Of Tm 3+ And Ni 2+ In Chalcogenide Glass Ceramics Containing Ga2s3 Nanocrystals: Influence On Photoluminescence Properties, Xiaosong Lu, Zhiqiang Lai, Jing Ren, Lukas Strizik, Tomas Wagner, Yanqiu Du, Gerald Farrell, Pengfei Wang

Articles

The distribution of Tm3+ and Ni2+ ions is unambiguously exhibited in 80GeS2-20Ga2S3 chalcogenide glass ceramics (GCs) containing Ga2S3 nanocrystals (NCs) by using advanced analytical transmission electron microscopy. Distinctively different distribution patterns of Tm3+ and Ni2+ ions are observed in the GCs obtained by controlled crystallization. The distribution of the dopants imposes strong influence on their optical properties which are revealed by absorption and photoluminescence (PL) spectra. Detailed discussions are given of the mechanisms of the crystallization-induced PL enhancement and quenching of the Tm3+ mid-infrared and Ni2+ near-infrared emissions, respectively.


In-Fiber Temperature Sensor Based On Green Up-Conversion Luminescence In An Er3+-Yb3+ Co-Doped Tellurite Glass Microsphere, Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, Pengfei Wang Jan 2019

In-Fiber Temperature Sensor Based On Green Up-Conversion Luminescence In An Er3+-Yb3+ Co-Doped Tellurite Glass Microsphere, Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, Pengfei Wang

Articles

A novel, to the best of our knowledge, in-fiber temperature sensor based on green up-conversion (UC) luminescence in an Er3+-Yb3+" role="presentation" style="box-sizing: border-box; display: inline; font-size: 12.88px; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Er3+-Yb3+Er3+-Yb3+ co-doped tellurite glass microsphere is described. The tellurite glass microsphere is located firmly inside a suspended tri-core hollow-fiber (STCHF) structure. The pump light launched via a single-mode fiber (SMF) is passed through a section of multimode fiber, which is fusion spliced between the SMF …


Ultrabroadband Mid-Infrared Emission From Cr 2+ -Doped Infrared Transparent Chalcogenide Glass Ceramics Embedded With Thermally Grown Zns Nanorods, Xiaosong Lu, Zhiqiang Lai, Runan Zhang, Haitao Guo, Jing Ren, Lukas Strizik, Tomas Wagner, Gerald Farrell, Pengfei Wang Jan 2019

Ultrabroadband Mid-Infrared Emission From Cr 2+ -Doped Infrared Transparent Chalcogenide Glass Ceramics Embedded With Thermally Grown Zns Nanorods, Xiaosong Lu, Zhiqiang Lai, Runan Zhang, Haitao Guo, Jing Ren, Lukas Strizik, Tomas Wagner, Gerald Farrell, Pengfei Wang

Articles

We report, for the first time to our knowledge, an ultrabroadband mid-infrared (MIR) emission in the range of 1800–2800 nm at room temperature from a Cr2+-doped chalcogenide glass ceramic embedded with pure hexagonal (wurtzite) β-ZnS nanorods and study the emission-dependent properties on the doping concentration of Cr2+. A new family of chalcogenide glasses based on (100 − x) Ge1.5As2S6.5 – x ZnSe (in mol.%) was prepared by melt-quenching method. The Cr2+: β-ZnS nanorods of ˜150 nm in diameter and ˜1 μm in length were grown in the Cr2+-doped glass after thermal annealing. The compositional variations of glass structures and optical …


Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova Jan 2019

Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova

Conference Papers

The discrete self-imaging effect reveals the distinct properties of cladding modes with core modes in step-index optical fibers, as was shown in our previous work [1], where only the linearly polarized LP0n modes were studied. In this paper, the dispersion diagram of the first 17 vector modes (TE0n, TM0n, HEmn and EHmn) and the related first 9 LPmn modes are calculated by both the full-vector finite element method and the graphical method with a three-layer step-index optical fiber model. The cladding modes distributions and the transitions between the core and cladding modes are analyzed. The results of this work are …


Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova Jan 2019

Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova

Conference Papers

Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to …


Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin Jan 2019

Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin

Conference Papers

Volume holographic lenses have great potential for different types of applications requiring light redirection and beam shaping such as solar light collection and LED light management. For lighting applications using LEDs, it is essential to make a highly efficient optical element to be placed in front of the LED in order to decrease energy losses. For that reason, a careful theoretical analysis of the properties and operation regime of the lens must be carried out at the design stage. The characteristics of focusing Holographic Optical Elements (HOE) depend on many factors including their thickness, spatial frequency, the angular range of …


Active Recall Networks For Multiperspectivity Learning Through Shared Latent Space Optimization, Theus Aspiras, Ruixu Liu, Vijayan K. Asari Jan 2019

Active Recall Networks For Multiperspectivity Learning Through Shared Latent Space Optimization, Theus Aspiras, Ruixu Liu, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Given that there are numerous amounts of unlabeled data available for usage in training neural networks, it is desirable to implement a neural network architecture and training paradigm to maximize the ability of the latent space representation. Through multiple perspectives of the latent space using adversarial learning and autoencoding, data requirements can be reduced, which improves learning ability across domains. The entire goal of the proposed work is not to train exhaustively, but to train with multiperspectivity. We propose a new neural network architecture called Active Recall Network (ARN) for learning with less labels by optimizing the latent space. This …


Recurrent Residual U-Net For Medical Image Segmentation, Md Zahangir Alom, Christopher Yakopcic, Mahmudul Hasan, Tarek M. Taha, Vijayan K. Asari Jan 2019

Recurrent Residual U-Net For Medical Image Segmentation, Md Zahangir Alom, Christopher Yakopcic, Mahmudul Hasan, Tarek M. Taha, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

Deep learning (DL)-based semantic segmentation methods have been providing state-of-the-art performance in the past few years. More specifically, these techniques have been successfully applied in medical image classification, segmentation, and detection tasks. One DL technique, U-Net, has become one of the most popular for these applications. We propose a recurrent U-Net model and a recurrent residual U-Net model, which are named RU-Net and R2U-Net, respectively. The proposed models utilize the power of U-Net, residual networks, and recurrent convolutional neural networks. There are several advantages to using these proposed architectures for segmentation tasks. First, a residual unit helps when training deep …


Deep Temporal Convolutional Networks For Short-Term Traffic Flow Forecasting, Wentian Zhao, Yanyun Gao, Tingxiang Ji, Xili Wan, Feng Ye, Guangwei Bai Jan 2019

Deep Temporal Convolutional Networks For Short-Term Traffic Flow Forecasting, Wentian Zhao, Yanyun Gao, Tingxiang Ji, Xili Wan, Feng Ye, Guangwei Bai

Electrical and Computer Engineering Faculty Publications

To reduce the increasingly congestion in cities, it is essential for intelligent transportation system (ITS) to accurately forecast the short-term traffic flow to identify the potential congestion sites. In recent years, the emerging deep learning method has been introduced to design traffic flow predictors, such as recurrent neural network (RNN) and long short-term memory (LSTM), which has demonstrated its promising results. In this paper, different from existing work, we study the temporal convolutional network (TCN) and propose a deep learning framework based on TCN model for short-term city-wide traffic forecast to accurately capture the temporal and spatial evolution of traffic …


A Survey Of Techniques For Mobile Service Encrypted Traffic Classification Using Deep Learning, Pan Wang, Xuejiao Chen, Feng Ye, Zhixin Sun Jan 2019

A Survey Of Techniques For Mobile Service Encrypted Traffic Classification Using Deep Learning, Pan Wang, Xuejiao Chen, Feng Ye, Zhixin Sun

Electrical and Computer Engineering Faculty Publications

The rapid adoption of mobile devices has dramatically changed the access to various net- working services and led to the explosion of mobile service traffic. Mobile service traffic classification has been a crucial task that attracts strong interest in mobile network management and security as well as machine learning communities for past decades. However, with more and more adoptions of encryption over mobile services, it brings a lot of challenges about mobile traffic classification. Although classical machine learning approaches can solve many issues that port and payload-based methods cannot solve, it still has some limitations, such as time-consuming, costly handcrafted …