Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Electrical and Computer Engineering

Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu Oct 2004

Achromatic Angle-Insensitive Infrared Quarter-Wave Retarder Based On Total Internal Reflection At The Si–Sio2 Interface, R. M.A. Azzam, Cristina L. Spinu

Electrical Engineering Faculty Publications

An achromatic infrared (λ = 1.2–4 μm), Si-prism quarter-wave retarder (QWR) is described that uses total internal reflection at a buried Si–SiO2 interface at an angle of incidence φ near 33°, where ∂Δ/∂φ = 0. The retardance Δ deviates from 90° by <±2° within a field of view of ±10° (in air) over the entire bandwidth. Because the SiO2 layer at the base of the prism is optically thick, this QWR is unaffected by environmental contamination.


Wide Angle Decentered Lens Beam Steering For Infrared Countermeasures Applications, Jennifer L. Gibson, Bradley D. Duncan, Edward A. Watson, John S. Loomis Oct 2004

Wide Angle Decentered Lens Beam Steering For Infrared Countermeasures Applications, Jennifer L. Gibson, Bradley D. Duncan, Edward A. Watson, John S. Loomis

Electro-Optics and Photonics Faculty Publications

A beam-steering system consisting of three cemented achromatic doublets is presented. Intended for use in IR countermeasure applications, our system is designed to operate over the 2- to 5-μm spectrum with minimum angular dispersion. We show that dispersion can be minimized by using doublet lenses fashioned from AMTIR-1 and germanium. Our system is designed to be compact and lightweight, with no internal foci, while allowing steering to ±22.5 deg. We also maintain a minimum 2-in. clear aperture for all steering angles, and a nominal divergence of 1 mrad. Plane wave and Gaussian beam analyses of our system are presented.


Volume Holographic Recording And Readout For 90-Deg Geometry, Partha P. Banerjee, Monish Ranjan Chatterjee, Nickolai Kukhtarev, Tatiana Kukhtareva Sep 2004

Volume Holographic Recording And Readout For 90-Deg Geometry, Partha P. Banerjee, Monish Ranjan Chatterjee, Nickolai Kukhtarev, Tatiana Kukhtareva

Electrical and Computer Engineering Faculty Publications

When a prerecorded cross-beam hologram is reconstructed (so-called edge-lit readout) with a uniform plane wave and a point source, the resulting exact solutions reveal Bessel-function-type diffracted beam profiles, which are fundamentally modified under weak propagational diffraction. The case of a profiled beam readout with propagational diffraction may be analyzed using a transfer function approach based on 2-D Laplace transforms. In a second series of investigations, dynamic readout from a cross-beam volume hologram recorded with two orthogonal uniform plane waves is considered for various dependences of the refractive index modulation with intensity. Typically, refractive index profiles that are proportional to the …


Map Estimation For Hyperspectral Image Resolution Enhancement Using An Auxiliary Sensor, Russell C. Hardie, Michael T. Eismann, Gregory L. Wilson Sep 2004

Map Estimation For Hyperspectral Image Resolution Enhancement Using An Auxiliary Sensor, Russell C. Hardie, Michael T. Eismann, Gregory L. Wilson

Electrical and Computer Engineering Faculty Publications

This paper presents a novel maximum a posteriori (MAP) estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important …


Volume Holographic Optical Elements, Ching-Cherng Sun, Partha P. Banerjee Sep 2004

Volume Holographic Optical Elements, Ching-Cherng Sun, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

The final two papers are concerned with the analysis of novel holograms. Banerjee et al. investigate holographic recording and reconstruction for edge-lit holograms recorded in a 90-degree geometry. Various cases of recording and readout that incorporate propagational diffraction have been modeled. It is shown that the 90-degree geometry can result in beam shaping, as evidenced through preliminary experimental results with photorefractive lithium niobate. Nguyen et al. propose a new approach for designing computer-generated holograms. An artificial neural network is used to initiate the genetic algorithm so that the high computation cost of genetic algorithms for synthesizing holograms is significantly reduced …


Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam Aug 2004

Phase Shifts That Accompany Total Internal Reflection At A Dielectric–Dielectric Interface, R. M.A. Azzam

Electrical Engineering Faculty Publications

The absolute, average, and differential phase shifts that p- and s-polarized light experience in total internal reflection (TIR) at the planar interface between two transparent media are considered as functions of the angle of incidence φ. Special angles at which quarter-wave phase shifts are achieved are determined as functions of the relative refractive index N. When the average phase shift equals π/2, the differential reflection phase shift Δ is maximum, and the reflection Jones matrix assumes a simple form. For N>√3, the average and differential phase shifts are equal (hence δp=3δs) at …


Interferometric And Holographic Imaging Of Surface-Breaking Cracks, James Lawrence Blackshire, Bradley D. Duncan Jun 2004

Interferometric And Holographic Imaging Of Surface-Breaking Cracks, James Lawrence Blackshire, Bradley D. Duncan

Electro-Optics and Photonics Faculty Publications

Two advanced nondestructive evaluation systems are developed for imaging surface-breaking cracks in aerospace materials. The systems use scanning heterodyne interferometry and frequency-translated holography principles to image ultrasonic displacement fields on material surfaces with high resolution and sensitivity. Surface-breaking cracks are detected and characterized by visualizing near-field ultrasonic scattering processes, which in turn results in local intensification of ultrasonic displacement fields in the immediate vicinity of a crack. The local intensification permits cracks to be easily distinguished from background levels, and creates unique displacement field images that follow the contours and morphology of the cracks with microscopic precision. The interferometric and …


Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski Jan 2004

Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell’s equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere’s law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.


Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin Jan 2004

Photonic Band Gap Analysis Using Finite-Difference Frequency-Domain Method, Shangping Guo, Feng Wu, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

A finite-difference frequency-domain (FDFD) method is applied for photonic band gap calculations. The Maxwell’s equations under generalized coordinates are solved for both orthogonal and non-orthogonal lattice geometries. Complete and accurate band gap information is obtained by using this FDFD approach. Numerical results for 2D TE/TM modes in square and triangular lattices are in excellent agreements with results from plane wave method (PWM). The accuracy, convergence and computation time of this method are also discussed.


Comparative Analysis Of Bragg Fibers, Shangping Guo, Sacharia Albin, Robert S. Rogowski Jan 2004

Comparative Analysis Of Bragg Fibers, Shangping Guo, Sacharia Albin, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

In this paper, we compare three analysis methods for Bragg fibers, viz. the transfer matrix method, the asymptotic method and the Galerkin method. We also show that with minor modifications, the transfer matrix method is able to calculate exactly the leakage loss of Bragg fibers due to a finite number of H/L layers. This approach is more straightforward than the commonly used Chew’s method. It is shown that the asymptotic approximation condition should be satisfied in order to get accurate results. The TE and TM modes, and the band gap structures are analyzed using Galerkin method.


Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet Jan 2004

Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching …