Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Electrical and Computer Engineering

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt Dec 2017

Synthesis And Characterization Of Thermoresponsive Hydrogels Based On N-Isopropylacrylamide Crosslinked With 4,4′-Dihydroxybiphenyl Diacrylate, Shuo Tang, Martha Floy, Rohit Bhandari, Manjula Sunkara, Andrew J. Morris, Thomas D. Dziubla, J. Zach Hilt

Chemical and Materials Engineering Faculty Publications

A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer Jul 2017

Energy From Chemical Reactions: Understanding The Combustion Engine, Tammy Guthrie, Kathy Prophet, Greg Herzig, Cassie Kautzer

Middle School Lesson Plans

Automobiles produce a large amount of heat generated by the burning of gasoline. Burning gasoline is a chemical reaction that causes a phase change. This is called combustible energy. During combustion fuel combines with oxygen to release energy (such as heat, light, sound) along with another product that is often considered waste. Most of the energy produced is not used to power the automobile, but is released as heat. 19.3 pounds of the greenhouse gas, carbon dioxide, is produced from the combustion of 1 gallon of U.S. gasoline according to the U.S. Energy Information Administration.


Anion Exchange Membrane Capacitive Deionization Cells, Ayokunle Omosebi, Xin Gao, Nicolas Holubowitch, Zhiao Li, James Landon, Kunlei Liu Jul 2017

Anion Exchange Membrane Capacitive Deionization Cells, Ayokunle Omosebi, Xin Gao, Nicolas Holubowitch, Zhiao Li, James Landon, Kunlei Liu

Center for Applied Energy Research Faculty and Staff Publications

The electrochemical response of capacitive deionization (CDI) employing a single anion exchange membrane (AEM-CDI) is contrasted to conventional two-membrane CDI (MCDI) formed with complementary anion and cation exchange membranes. Pristine activated carbon cloth electrodes that possess native positive surface charge in solution were used as both anode (positive electrode) and cathode (negative electrode) in these cells. In a separate set of tests to investigate the impact of surface charge modification on deionization responses, the single and dual membrane cells were formed with asymmetric electrodes (AEM-aCDI and aMCDI) consisting of nitric acid oxidized electrodes that possess negative surface charge as the …


Size And Shape Distributions Of Primary Crystallites In Titania Aggregates, Eric A. Grulke, Kazuhiro Yamamoto, Kazuhiro Kumagai, Ines Häusler, Werner Österle, Erik Ortel, Vasile-Dan Hodoroaba, Scott C. Brown, Christopher Chan, Jiwen Zheng, Kenji Yamamoto, Kouji Yashiki, Nam Woong Song, Young Heon Kim, Aleksandr B Stefaniak, D. Schwegler-Berry, Victoria A. Coleman, Åsa K. Jämting, Jan Herrmann, Toru Arakawa, Woodrow W. Burchett, Joshua W. Lambert, Arnold J. Stromberg Jul 2017

Size And Shape Distributions Of Primary Crystallites In Titania Aggregates, Eric A. Grulke, Kazuhiro Yamamoto, Kazuhiro Kumagai, Ines Häusler, Werner Österle, Erik Ortel, Vasile-Dan Hodoroaba, Scott C. Brown, Christopher Chan, Jiwen Zheng, Kenji Yamamoto, Kouji Yashiki, Nam Woong Song, Young Heon Kim, Aleksandr B Stefaniak, D. Schwegler-Berry, Victoria A. Coleman, Åsa K. Jämting, Jan Herrmann, Toru Arakawa, Woodrow W. Burchett, Joshua W. Lambert, Arnold J. Stromberg

Chemical and Materials Engineering Faculty Publications

The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions …


Improving Quality Of Patient Care Through Automated Nerve Segmentation, Madisen D. Phillips Jun 2017

Improving Quality Of Patient Care Through Automated Nerve Segmentation, Madisen D. Phillips

Undergraduate Research & Mentoring Program

A continuous peripheral nerve block cPNB is most commonly used in patients during the post-operative period, with documented benefits that include a decrease in reported pain, a decrease of opioid related side effects, and an increase in patient satisfaction. Accurately identifying nerve structures for cPNB placement is a critical step for proper insertion. The aim of this research is to use supervised learning techniques (least squares regression and Receiver Operating Characteristic (ROC) curve analysis) to build a model that can segment and annotate a bundle of nerves known as the brachial plexus (BP) while minimizing segmentation error. Dependent on large …


Methanol Steam Reforming: Na Doping Of Pt/Ysz Provides Fine Tuning Of Selectivity, Michela Martinelli, Gary Jacobs, Uschi M. Graham, Burtron H. Davis May 2017

Methanol Steam Reforming: Na Doping Of Pt/Ysz Provides Fine Tuning Of Selectivity, Michela Martinelli, Gary Jacobs, Uschi M. Graham, Burtron H. Davis

Center for Applied Energy Research Faculty and Staff Publications

In this work, we found that sodium doping can be used to improve CO2 selectivity for supported Pt catalyst during methanol steam reforming. These materials are usually very active in the low temperature range; however, they are characterized by high selectivity of CO, which is a poison in downstream polymer electrolyte membrane fuel cells (PEM-FC) application. With Na doping, we found that CO2 selectivity was higher than 90% when 2.5 wt.% of sodium was added to Pt/YSZ. We have speculated that the different product distribution is due to a different reaction pathway being opened for CH3OH …


Field-Induced Formation And Growth Of Pillars On Films Of Bisphenol-A-Polycarbonate, Yu-Fan Chuang, Jyun-Siang Peng, Fuqian Yang, Donyau Chiang, Sanboh Lee Jan 2017

Field-Induced Formation And Growth Of Pillars On Films Of Bisphenol-A-Polycarbonate, Yu-Fan Chuang, Jyun-Siang Peng, Fuqian Yang, Donyau Chiang, Sanboh Lee

Chemical and Materials Engineering Faculty Publications

An electric field is used to construct pillars on films of bisphenol-A-polycarbonate (BPAPC) between two parallel electrodes. Both the size and density of the pillars are dependent on the film thickness. For the same experimental conditions, thicker films will lead to the formation of pillars of larger sizes and smaller densities. The time dependence of the average diameter of the pillars is found to be a linear function of the square root of the difference between the annealing time and incubation time. The temperature dependence of the temporal evolution of the pillars follows the Arrhenius relation with an activation enthalpy …


Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton Jan 2017

Optimising The Performance Of Cement-Based Batteries, Aimee Byrne, Shane Barry, Niall Holmes Dr., Brian Norton

Articles

The development of a battery using different cement-based electrolytes to provide a low but potentially sustainable source of electricity is described. The current, voltage, and lifespan of batteries produced using different electrolyte additives, copper plate cathodes, and (usually) aluminium plate anodes were compared to identify the optimum design, components, and proportions to increase power output and longevity. Parameters examined include water/cement ratio, anode to cathode surface area ratio, electrode material, electrode spacing, and the effect of sand, aggregate, salts, carbon black, silica fume, and sodium silicate on the electrolyte. The results indicate that the greatest and longest lasting power can …