Open Access. Powered by Scholars. Published by Universities.®

Structural Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Structural Engineering

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are …


Ut Lineman Chute, Benjamin D. Jacob, Logan T. Sissom, Stephen E. Brennan, Thomas B. Mcdavid May 2017

Ut Lineman Chute, Benjamin D. Jacob, Logan T. Sissom, Stephen E. Brennan, Thomas B. Mcdavid

Chancellor’s Honors Program Projects

No abstract provided.


Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins Jan 2017

Analytical Strip Method For Thin Cylindrical Shells, John T. Perkins

Theses and Dissertations--Civil Engineering

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented in this dissertation. The system of three governing differential equations for the cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in terms of a potential function. The PDE is solved as a single series form of the potential function, from which the displacement and force quantities are determined. The solution is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may have simply supported edges, clamped edges, free edges, or edges supported by isotropic beams. The cylindrical shell can be stiffened …