Open Access. Powered by Scholars. Published by Universities.®

Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Environmental Engineering

Past, Present And Future Of Irrigation On The U.S. Great Plains, Steve R. Evett, Paul D. Colaizzi, Freddie R. Lamm, Susan A. O'Shaughnessy, Derek M. Heeren, Thomas J. Trout, William L. Kranz, Xiaomao Lin Jul 2020

Past, Present And Future Of Irrigation On The U.S. Great Plains, Steve R. Evett, Paul D. Colaizzi, Freddie R. Lamm, Susan A. O'Shaughnessy, Derek M. Heeren, Thomas J. Trout, William L. Kranz, Xiaomao Lin

Biological Systems Engineering: Papers and Publications

Motivated by the need for sustainable water management and technology for next-generation crop production, the future of irrigation on the U.S. Great Plains was examined through the lenses of past changes in water supply, historical changes in irrigated area, and innovations in irrigation technology, management, and agronomy. We analyzed the history of irrigated agriculture through the 1900s to the present day. We focused particularly on the efficiency and water productivity of irrigation systems (application efficiency, crop water productivity, and irrigation water use productivity) as a connection between water resource management and agricultural production. Technology innovations have greatly increased the efficiency …


Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak Jan 2018

Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak

Biological Systems Engineering: Papers and Publications

Under the semiarid climate of the Southwest United States, accurate estimation of crop water use is important for water management and planning under conservation agriculture. The objectives of this study were to estimate maize water use and water productivity in the Four Corners region of New Mexico. Maize was grown under full irrigation during the 2011, 2012, 2013, 2014 and 2017 seasons at the Agricultural Science Center at Farmington (NM). Seasonal amounts of applied irrigation varied from 576.6 to 1051.6 mm and averaged 837.7 mm and the total water supply varied from 693.4 to 1140.5 mm. Maize actual evapotranspiration was …


Integration Of Hydrogeophysical Datasets And Empirical Orthogonal Functions For Improved Irrigation Water Management, Catherine E. Finkenbiner, Trenton E. Franz, Justin P. Gibson, Derek M. Heeren, J. D. Luck Jan 2018

Integration Of Hydrogeophysical Datasets And Empirical Orthogonal Functions For Improved Irrigation Water Management, Catherine E. Finkenbiner, Trenton E. Franz, Justin P. Gibson, Derek M. Heeren, J. D. Luck

Biological Systems Engineering: Papers and Publications

Precision agriculture offers the technologies to manage for infield variability and incorporate variability into irrigation management decisions. The major limitation of this technology often lies in the reconciliation of disparate data sources and the generation of irrigation prescription maps. Here the authors explore the utility of the cosmic-ray neutron probe (CRNP) which measures volumetric soil water content (SWC) in the top ~ 30 cm of the soil profile. The key advantages of CRNP is that the sensor is passive, non-invasive, mobile and soil temperature-invariant, making data collection more compatible with existing farm operations and extending the mapping period. The objectives …


Temporal Dynamics Of Maize Plant Growth, Water Use, And Leaf Water Content Using Automated High Throughput Rgb And Hyperspectral Imaging, Yufeng Ge, Geng Bai, Vincent Stoerger, James C. Schnable Jan 2016

Temporal Dynamics Of Maize Plant Growth, Water Use, And Leaf Water Content Using Automated High Throughput Rgb And Hyperspectral Imaging, Yufeng Ge, Geng Bai, Vincent Stoerger, James C. Schnable

Biological Systems Engineering: Papers and Publications

Automated collection of large scale plant phenotype datasets using high throughput imaging systems has the potential to alleviate current bottlenecks in data-driven plant breeding and crop improvement. In this study, we demonstrate the characterization of temporal dynamics of plant growth and water use, and leaf water content of two maize genotypes under two different water treatments. RGB (Red Green Blue) images are processed to estimate projected plant area, which are correlated with destructively measured plant shoot fresh weight (FW), dry weight (DW) and leaf area. Estimated plant FW and DW, along with pot weights, are used to derive daily plant …


Soybean Yield, Evapotranspiration, Water Productivity, And Soil Water Extraction Response To Subsurface Drip Irrigation And Fertigation, Suat Irmak, James E. Specht, Lameck O. Odhiambo, J. M. Rees, K. G. Cassman Jan 2014

Soybean Yield, Evapotranspiration, Water Productivity, And Soil Water Extraction Response To Subsurface Drip Irrigation And Fertigation, Suat Irmak, James E. Specht, Lameck O. Odhiambo, J. M. Rees, K. G. Cassman

Biological Systems Engineering: Papers and Publications

Soybean [Glycine max (L.) Merr.] yield, irrigation water use efficiency (IWUE), crop water use efficiency (CWUE), evapotranspiration water use efficiency (ETWUE), and soil water extraction response to eleven treatments of full, limited, or delayed irrigation versus a rainfed control were investigated using a subsurface drip irrigation (SDI) system at a research site in south-central Nebraska. The SDI system laterals were 0.40 m deep in every other row middle of 0.76 m spaced plant rows. Actual evapotranspiration (ETa) was quantified in all treatments and used to schedule irrigation events on a 100% ETa replacement basis in all but …


Soil Water Extraction Patterns And Crop, Irrigation, And Evapotranspiration Water Use Efficiency Of Maize Under Full And Limited Irrigation And Rainfed Settings, Koffi Djaman, Suat Irmak Jan 2012

Soil Water Extraction Patterns And Crop, Irrigation, And Evapotranspiration Water Use Efficiency Of Maize Under Full And Limited Irrigation And Rainfed Settings, Koffi Djaman, Suat Irmak

Biological Systems Engineering: Papers and Publications

The effects of full and limited irrigation and rainfed maize production practices on soil water extraction and water use efficiencies were investigated in 2009 and 2010 under center-pivot irrigation near Clay Center, Nebraska. Four irrigation regimes (fully irrigated treatment (FIT), 75% FIT, 60% FIT, and 50% FIT) and a rainfed treatment were implemented. The crop water use efficiency (CWUE, or crop water productivity), irrigation water use efficiency (IWUE), and evapotranspiration water use efficiency (ETWUE) were used to evaluate the water productivity performance of each

treatment. The seasonal rainfall amounts in 2009 and 2010, respectively, were 426 mm (18% below normal) …


Large-Scale On-Farm Implementation Of Soil Moisture-Based Irrigation Management Strategies For Increasing Maize Water Productivity, Suat Irmak, Michael J. Burgert, Haishun Yang, Kenneth G. Cassman, Daniel T. Walters, William R. Rathje, Jose O. Payero, Patricio Grassini, Mark S. Kuzila, Kelly J. Brunkhorst, Dean E. Eisenhauer, William L. Kranz, Brandy Vandewalle, Jennifer M. Rees, Gary L. Zoubek, Charles A. Shapiro, Gregory J. Teichmeier Jan 2012

Large-Scale On-Farm Implementation Of Soil Moisture-Based Irrigation Management Strategies For Increasing Maize Water Productivity, Suat Irmak, Michael J. Burgert, Haishun Yang, Kenneth G. Cassman, Daniel T. Walters, William R. Rathje, Jose O. Payero, Patricio Grassini, Mark S. Kuzila, Kelly J. Brunkhorst, Dean E. Eisenhauer, William L. Kranz, Brandy Vandewalle, Jennifer M. Rees, Gary L. Zoubek, Charles A. Shapiro, Gregory J. Teichmeier

Biological Systems Engineering: Papers and Publications

Irrigated maize is produced on about 3.5 Mha in the U.S. Great Plains and western Corn Belt. Most irrigation water comes from groundwater. Persistent drought and increased competition for water resources threaten long-term viability of groundwater resources, which motivated our research to develop strategies to increase water productivity without noticeable reduction in maize yield. Results from previous research at the University of Nebraska-Lincoln (UNL) experiment stations in 2005 and 2006 found that it was possible to substantially reduce irrigation amounts and increase irrigation water use efficiency (IWUE) and crop water use efficiency (CWUE) (or crop water productivity) with little or …