Open Access. Powered by Scholars. Published by Universities.®

Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Environmental Engineering

Assessment Of Biomass Burning And Mineral Dust Impacts On Air Quality And Regional Climate, Xinyi Dong Dec 2015

Assessment Of Biomass Burning And Mineral Dust Impacts On Air Quality And Regional Climate, Xinyi Dong

Doctoral Dissertations

East Asia is frequently influenced by dust storms and biomass burning. This study conducts a comprehensive investigation of its kind based on data analysis with surface measurements, satellite products, and model simulations. The objective of this study is to improve the understanding of the impacts of biomass burning and dust on air quality and regional climate. The study period covers March and April from 2006 to 2010. Biomass burning from Peninsular Southeast Asia (PSEA) has significant annual variations by up to 60% within the study period. The impact of biomass burning on air quality is mainly confined within the upper …


Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman Sep 2015

Heterogeneous Oxidation Of Catechol, Elizabeth A. Pillar, Ruixin Zhou, Marcelo I. Guzman

Chemistry Faculty Publications

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air–solid interface under variable relative humidity (RH = 0–90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10–6 occurs for …


Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti Feb 2015

Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti

Civil and Environmental Engineering Faculty Publications and Presentations

The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME- 4) and analyzed by two-dimensional gas chromatography– time-of-flight mass spectrometry (GC × GC–ToFMS). The sensitivity and resolving power of GC × GC–ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements for 708 positively or tentatively identified compounds. Estimated …