Open Access. Powered by Scholars. Published by Universities.®

Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Environmental Engineering

An Improved Method Of Arsenic (Iii) Removal By Reverse Osmosis Membrane, Yizhi Hou Jul 2017

An Improved Method Of Arsenic (Iii) Removal By Reverse Osmosis Membrane, Yizhi Hou

Master's Theses (2009 -)

Arsenic is a Group 1 carcinogen as there is abundant research to support that ingestion of arsenic in drinking water and food can lead to liver, lung, kidney, or bladder cancer in humans. The recommend World Health Organization (WHO) arsenic standard in drinking water is 10 µg/L, while the Environmental Protection Agency's (EPA) Maximum Contaminant Level (MCL) of arsenic in drinking water is 10 µg/L. Globally, at least 40 million people face more than 10 µg/L arsenic contamination in their drinking water. As(III) (trivalent state, such as arsenite), and As(V) (pentavalent state, such as arsenates) are the dominant arsenic forms …


Municipal Wastewater Anaerobic Treatment With Enhanced Clarification, Kevin Berg Jul 2015

Municipal Wastewater Anaerobic Treatment With Enhanced Clarification, Kevin Berg

Master's Theses (2009 -)

As energy costs rise, water reclamation facilities (WRFs) desire lower cost, easily operated systems to remove BOD5 and suspended solids. WRFs typically utilize an aerobic process called activated sludge to remove biochemical oxygen demand (BOD). BOD, specifically 5 day BOD (BOD5), is used as an indicator of the organic strength of a solution. Anaerobic treatment provides an alternative to activated sludge by removing BOD5, generating biogas containing methane for energy and producing less biomass that requires disposal. Anaerobic treatment functions as an exceptional alternative to activated sludge when packaged as a system with a small footprint that operates at ambient …