Open Access. Powered by Scholars. Published by Universities.®

Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Environmental Engineering

Applied And Mechanistic Studies Of Microbial 17beta-Estradiol Degradation, Zhongtian Li Nov 2012

Applied And Mechanistic Studies Of Microbial 17beta-Estradiol Degradation, Zhongtian Li

Z Li

The presence of natural estrogens, a class of endocrine disrupting compounds, in water has caused increasing concerns over their adverse impacts on the health of aquatic eco-systems and human beings. In this study, adsorption characteristics of two natural estrogens, 17β-estradiol (E2) and estrone (E1), on granular activated carbon (GAC) were investigated in isotherm tests and in a GAC column. The GAC column was then converted to a biologically active carbon (BAC) column and the removal efficiency of E2 and its primary biodegradation intermediate E1 were monitored. During BAC operation, the impacts of various reactor operation parameters, such as the carbon …


Removing 17Β-Estradiol From Drinking Water In A Biologically Active Carbon (Bac) Reactor Modified From A Granular Activated Carbon (Gac) Reactor, Zhongtian Li Mar 2012

Removing 17Β-Estradiol From Drinking Water In A Biologically Active Carbon (Bac) Reactor Modified From A Granular Activated Carbon (Gac) Reactor, Zhongtian Li

Z Li

Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively high adsorption capacity for E2 in isotherm experiments, it appeared to have a long mass transfer zone in a GAC column reactor, causing an early leakage of E2 in the effluent. With an influent E2 concentration of 20 μg/L, the GAC reactor was able to bring down effluent …