Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biological Engineering

Life Cycle Assessment Of Greenhouse Gas Emissions From Ethanol And Biopolymers, Adam J. Liska, Xiao Xue Fang Mar 2011

Life Cycle Assessment Of Greenhouse Gas Emissions From Ethanol And Biopolymers, Adam J. Liska, Xiao Xue Fang

Adam Liska Papers

Conclusions

• Regulatory LCA is not likely to be used for non‐fuel chemicals alone in the near future

• Significant GHG emission credits for corn‐ethanol can be obtained by using only roughly 6‐9% of initial starch for production of biopolymers based on previous LCA theory

• Pay close attention to values in calculating credits per kg—these have to stand up in litigation to ensure the credit

• Credits are proportional to the mass of polymer produced

• Many theoretical issues are uncertain and credits will only be determined in conjunction with EPA

• Indirect emissions are uncertain and are a …


Ethanol Yields And Cell Wall Properties In Divergently Bred Switchgrass Genotypes, Gautam Sarath, Bruce S. Dien, Aaron J. Saathoff, Kenneth P. Vogel, Robert B. Mitchell, Han Chen Jan 2011

Ethanol Yields And Cell Wall Properties In Divergently Bred Switchgrass Genotypes, Gautam Sarath, Bruce S. Dien, Aaron J. Saathoff, Kenneth P. Vogel, Robert B. Mitchell, Han Chen

Biological Systems Engineering: Papers and Publications

Genetic modification of herbaceous plant cell walls to increase biofuels yields is a primary bioenergy research goal. Using two switchgrass populations developed by divergent breeding for ruminant digestibility, the contributions of several wall-related factors to ethanol yields was evaluated. Field grown low lignin plants significantly out yielded high lignin plants for conversion to ethanol by 39.1% and extraction of xylans by 12%. However, across all plants analyzed, greater than 50% of the variation in ethanol yields was attributable to changes in tissue and cell wall architecture, and responses of stem biomass to diluteacid pretreatment. Although lignin levels were lower in …


Evaluation Of Ethanol And Water Introduction Via Fumigation On Efficiency And Emissions Of A Compression Ignition Engine Using An Atomization Technique, Grant S. Janousek Aug 2010

Evaluation Of Ethanol And Water Introduction Via Fumigation On Efficiency And Emissions Of A Compression Ignition Engine Using An Atomization Technique, Grant S. Janousek

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Performance of a diesel engine, equipped for ethanol and water fumigation, was studied. The method implemented allowed for non-destructive introduction of liquids in advance of the turbocharger. Engine torque, speed, emission components, diesel and ethanol fuel rates were recorded and analyzed for each mixture of inputs. Based on the results of the study, thermal efficiency was not significantly different from the baseline diesel performance when using several ethanol and water mixtures. On the other hand, ethanol fumigation caused a significant reduction in NOx emissions and an increase in HC and CO emissions. No significant changes in CO2 or O2 occurred.


Switchgrass For Bioethanol And Other Value-Added Applications: A Review, Deepak R. Keshwani, Jay J. Cheng Jan 2009

Switchgrass For Bioethanol And Other Value-Added Applications: A Review, Deepak R. Keshwani, Jay J. Cheng

Biological Systems Engineering: Papers and Publications

Switchgrass is a promising feedstock for value-added applications due to its high productivity, potentially low requirements for agricultural inputs and positive environmental impacts. The objective of this paper is to review published research on the conversion of switchgrass into bioethanol and other value-added products. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from runoff, soil remediation and provision of habitats for grassland birds. Pretreatment of switchgrass is required to improve the yields of fermentable sugars. Based on the type of pretreatment, glucose yields range from 70% to 90%, and xylose yields range from 70% to …


Antiproliferation Properties Of Grain Sorghum Dry Distiller’S Grain Lipids In Caco-2 Cells, Richard Zbasnik, Timothy P. Carr, Curtis L. Weller, Keum Taek Hwang, Lijun Wang, Susan L. Cuppett, Vicki Schlegel Jan 2009

Antiproliferation Properties Of Grain Sorghum Dry Distiller’S Grain Lipids In Caco-2 Cells, Richard Zbasnik, Timothy P. Carr, Curtis L. Weller, Keum Taek Hwang, Lijun Wang, Susan L. Cuppett, Vicki Schlegel

Biological Systems Engineering: Papers and Publications

Antiproliferative properties of lipids extracted from grain sorghum (GS) dry distiller’s grain (DDG) were analyzed to determine the feasibility of developing GS coproducts as a source for human health dietary ingredients. The lipid extract of GSDDG was delivered to human colon carcinoma (Caco-2) cells by solubilizing 0−1000 μg/mL of GS-DDG lipids in 100 μg/mL increments with micelles. A significant reduction in cell viability (25−50%) resulted at treatment levels of 400−1000 μg/mL GS-DDG lipids (p < 0.05). Alternatively, total protein levels of cells treated with 400, 500, and 600 μg/mL of GS-DDG lipid were not significantly different from the control, indicating cell growth during the treatment period. Total cell counts for the control were not significantly different from the GS-DDG lipid treated cells, but dead cell counts increased by 10% for the latter sample with a concomitant increase of the intercellular protein lactate dehydrogenase leakage (30−40%) in the medium. Preliminary analysis by the fluorescence-activated cell method (FACs) demonstrated that nonviable cells were in either the early apoptotic, late apoptotic, or necrotic stage post-treatment with 400, 500, and 600 μg/mL GS-DDG lipids. Physiochemical characterization of the GS-DDG lipids used for the antiproliferation study showed the presence of vitamin E (predominantly γ-tocopherol), triacylglycerides (predominantly linoleic acid), policosanols, aldehydes, and sterols (predominantly campesterol and stigmasterol), each of which or as synergistic/additive group of constituents may be responsible for the antiproliferative effect.