Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Biomedical Engineering and Bioengineering

University of Nebraska - Lincoln

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Articles 1 - 2 of 2

Full-Text Articles in Biological Engineering

A Novel Biochamberfor Modeling Of Atherosclerotic Arteries: In-Vitro Capabilities And Applications, Iman Salafian, Angelos Karagiannis, Benjamin S. Terry, Yiannis S. Chatzizisis Apr 2017

A Novel Biochamberfor Modeling Of Atherosclerotic Arteries: In-Vitro Capabilities And Applications, Iman Salafian, Angelos Karagiannis, Benjamin S. Terry, Yiannis S. Chatzizisis

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is a chronic disease that involves the lipid accumulation and inflammation of the arterial wall [1,2]. Despite great efforts,its pathophysiology has not been fully elucidated. Existent drugs can reduce its progression but there are no available drugs to prevent its complications [3,4]. Atherosclerosis remains the leading global cause of death[5].

The purpose of this work is to design and build a customized biochamber which can be used for the following studies:

•Study the pathophysiology of atherosclerosis in vitro & ex vivo

•Investigate the mechanisms of atherosclerotic plaque disruption

•Examine the direct effect of different anti-atherosclerotic drugs on lesions

•Use …


Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman Apr 2014

Application Of Limited Mixing In The Hele-Shaw Geometry In Fabrication Of Janus Hydrogels, Md Mahmudur Rahman

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

It is widely accepted that cells behave differently responding to the stiffness of their extracellular matrix (ECM). Such observations were made by culturing cells on hydrogel substrates of tunable stiffness. However, it was recently proposed that cells may sense how strongly they are tethered to ECM, not the local stiffness of ECM. To investigate both hypotheses, we developed a method to fabricate Janus polyacrylamide (PAAM) gels. We squeeze two drops of different concentrations in the Hele-Shaw geometry to generate radial Stokes flow. When the drops coalesce, limited mixing occurs at the interface due to the narrow confinement, and diffusion normal …