Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biological Engineering

Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh Aug 2023

Reprogramming And Imaging Of Tumor Associated Macrophages Using Spuramolecular Nanoparticles, Anujan Ramesh

Doctoral Dissertations

Macrophages are highly plastic cells that are a part of the mononuclear phagocytic system and play a crucial role in both the innate and the adaptive immune systems. Although they have functionally diverse roles involved in physiological and pathological processes, they primarily act as phagocytes that aid in clearing infections. During these instances of tissue injury or infections, circulating monocytes are recruited to the site of the injury, where they differentiate to give rise to macrophages that have a pro-inflammatory function. These monocytes derived macrophages, however, exist across a spectrum of phenotypes based on the local tissue environment. The two …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


From Soap Bubbles To Cell Membranes, Peter Beltramo Jan 2020

From Soap Bubbles To Cell Membranes, Peter Beltramo

Science and Engineering Saturday Seminars

Have you ever blown a soap bubble and wondered - what causes the bubble to be so stable and produces those colorful reflections of light? The answer lies in a class of molecules known as surfactants, and they have remarkable similarities with the molecules that comprise the cell membrane of all living organisms. In this workshop, we will use the analogy of a soap bubble to describe cellular membrane properties such as chemistry, structure, membrane transport, and ion channel formation. The goals of this workshop are to 1) link initially intractable concepts in biology like intracellular transport to the intuitive …


Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang Mar 2019

Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang

Doctoral Dissertations

The use of pore-forming proteins (PFPs) in nanopore sensing has been fruitful largely due to their nanoscale size and the ease with which protein nanopores can be manipulated and consistently reproduced at a large scale. Nanopore sensing relies heavily on a steady ionic current afforded by rigid nanopores, as the change in current is indicative of analyte detection, revealing characteristics of the analyte such as its relative size, concentration, and charge, as well as the nanopore:analyte interaction. Rigid PFPs have been used in applications such as DNA sequencing, kinetic studies, analyte discrimination, and protein conformation dynamics at the single-molecule level. …


Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz Nov 2018

Biophysical Features Of The Extracellular Matrix Direct Breast Cancer Metastasis, Alyssa Schwartz

Doctoral Dissertations

Breast cancer is plagued by two key clinical challenges; drug resistance and metastasis. Most work to date probes these events on an extremely rigid plastic surface, which recapitulates few aspects of these processes in humans. A malignant cell first resides in breast tissue, then likely travels to the bone, brain, liver, or lung, each of which has a distinct mechanical and biochemical profile. Cells transmit mechanical forces into intracellular tension and biochemical signaling events, and here we hypothesize that this mechanotransduction influences drug response, growth, and migration. To probe the impact of extracellular matrix on drug resistance, we defined a …


Extracellular Matrix Control Of Breast Cancer Metastasis And Dormancy, Lauren Barney Nov 2016

Extracellular Matrix Control Of Breast Cancer Metastasis And Dormancy, Lauren Barney

Doctoral Dissertations

To metastasize, a cell must travel through circulation to a secondary tissue, and this process causes 90% of all cancer deaths. Although inefficient, metastasis is not random, and only capable seeds in hospitable soils are capable of outgrowing into detectable metastases. The overall hypothesis in this work is that the secondary tissue microenvironment, particularly the extracellular matrix (ECM), mediates metastasis. We posit that the ability of metastatic cells to survive dormancy, exit quiescence, and colonize a tissue depends upon the ability of the soil to sustain survival, and subsequently trigger outgrowth. We created a simple biomaterial platform with systematic control …