Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biological Engineering

Enhanced Anthocyanin Extraction From Red Cabbage Using Pulsed Electric Field Processing, Tanya K. Gachovska, David A. Cassada, Jeyamkondan Subbiah, Milford Hanna, Harshavardhan Thippareddi, Daniel D. Snow Aug 2010

Enhanced Anthocyanin Extraction From Red Cabbage Using Pulsed Electric Field Processing, Tanya K. Gachovska, David A. Cassada, Jeyamkondan Subbiah, Milford Hanna, Harshavardhan Thippareddi, Daniel D. Snow

Biological Systems Engineering: Papers and Publications

This study was conducted to evaluate the effect of pulsed electric field (PEF) treatment on anthocyanin extraction from red cabbage using water as a solvent. Mashed cabbage was placed in a batch treatment chamber and subjected to PEF (2.5 kV/cm electric field strength; 15 μs pulse width and 50 pulses, specific energy 15.63 J/g). Extracted anthocyanin concentrations (16 to 889 μg/mL) were determined using HPLC. Heat and light stabilities of the control and PEF-treated samples, having approximately the same initial concentrations, were studied. PEF treatments enhanced total anthocyanin extraction in water from red cabbage by 2.15 times with a higher …


Effect Of Magnetron Frequency On Heating Pattern In Domestic Oven, Sohan Birla, Krishnamoorthy Pitchai, Jeyamkondan Subbiah, David D. Jones Jan 2010

Effect Of Magnetron Frequency On Heating Pattern In Domestic Oven, Sohan Birla, Krishnamoorthy Pitchai, Jeyamkondan Subbiah, David D. Jones

Department of Biological Systems Engineering: Conference Presentations and White Papers

In this study a computer model was developed to simulate microwave heating of a model food with a range of magnetron frequencies. The range was decided upon performing the frequency spectrum analysis of microwave leakage from the microwave oven. Simulation results showed that the magnetron input as sinusoidal frequency from 2.44 GHz to 2.48 GHz generates different heating profiles. The simulated heating profiles were compared with experimental heating profiles obtained by using an IR camera. None of simulations with individual frequency exactly matches with experimental temperature profile. The closet match between simulated and observed temperature profiles was found with 2.46 …