Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biological Engineering

Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes Sep 2017

Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes

Dissertations, Theses, and Capstone Projects

Fabry disease is an X-linked lysosomal storage disorder caused by the deficiency of the enzyme, α-galactosidase A, which results in the accumulation of the lipid substrate. This accumulation results in obstruction of blood flow in patients and early demise at approximately 40-60 years of age. There is currently only one FDA approved treatment (Fabrazyme) classified as an enzyme replacement therapy. However, approximately 88% of patients experience a severe immune response that, rarely, can be fatal and is a huge cost burden at average $250,000 a year per patient. The structure of α-galactosidase A has been previously determined to be a …


The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li Aug 2017

The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Schwann cells are glial cells that serve the vital role of supporting neurons in the peripheral nervous system. While their primary function is to provide insulation (myelin) for axons, they also help regenerate injured axons by digesting severed axons and providing scaffolding to guide the regeneration process. This specific role of Schwann cells makes them highly important cellular targets following nerve injury. Although some efforts have been made to encourage Schwann cell migration after nerve damage, the use of electric fields to control cell responses remain unexplored; therefore, this experiment serves to characterize the behavior of Schwann cells to weak …


Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus Aug 2017

Establishing A Lung Model For Evaluation Of Engineered Lung Microbiome Therapies, Kathryn F. Atherton, Stephen Miloro, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Benzene, a toxin and carcinogen found in air polluted by cigarette smoke, car exhaust, and industrial processes, is associated with the development of leukemia and lymphoma. Other than avoiding exposure, there is no current method to deter the effects of benzene. One potential strategy to prevent these effects is to engineer the bacteria of the human lung microbiome to degrade benzene. To evaluate this novel approach, we must verify that the bacteria remain viable within the lung microenvironment. To do so, lungs were harvested from rats and swabbed to determine the contents of the original lung microbiome. Then green fluorescent …


Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis Aug 2017

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis

Doctoral Dissertations

Bioelectrochemical systems are an emerging technology capable of utilizing aqueous waste streams generated during biomass conversion of lignocellulosic feedstocks to produce valuable co-products and thus, have potential to be integrated into biorefineries. In a microbial electrolysis cell, organic compounds are converted to electrons, protons, and CO2 by fermentative and exoelectrogenic bacteria in the anode compartment. By having the ability to extract electrons from waste streams, these systems can treat water while also producing hydrogen, and thus can improve the efficiency of biomass to fuel production by minimizing external hydrogen requirement and enabling water recycle. The overall goal of this …


Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu Jan 2017

Fractionation And Characterization Of Lignin Streams From Genetically Engineered Switchgrass, Enshi Liu

Theses and Dissertations--Biosystems and Agricultural Engineering

Development of biomass feedstocks with desirable traits for cost-effective conversion is one of the main focus areas in biofuels research. As suggested by techno-economic analyses, the success of a lignocellulose-based biorefinery largely relies on the utilization of lignin to generate value-added products, i.e. fuels and chemicals. The fate of lignin and its structural/compositional changes during pretreatment have received increasing attention; however, the effect of genetic modification on the fractionation, depolymerization and catalytic upgrading of lignin from genetically engineered plants is not well understood. This study aims to fractionate and characterize the lignin streams from a wild-type and two genetically engineered …