Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses (2009 -)

Pedaling

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Supraspinal Control Of Unilateral Locomotor Performance: An Fmri Study Using A Custom Pedaling Device, Brett Arand Oct 2013

Supraspinal Control Of Unilateral Locomotor Performance: An Fmri Study Using A Custom Pedaling Device, Brett Arand

Master's Theses (2009 -)

This study aimed to develop a novel unilateral pedaling device, validate its function, and use it in an fMRI study of bilateral vs. unilateral locomotor control. The new device is MRI compatible and allows for conventional coupled bilateral pedaling, along with decoupled unilateral pedaling. It was designed with an assistance mechanism to simulate the presence of the non-contributing leg while pedaling unilaterally. During coupled bilateral pedaling, the two legs work in unison: while one leg is extending in the downstroke, it provides support to lift the other leg back up as it is flexing in the upstroke. The device uses …


Examining Lower Extremity Motor Activity Using Magnetoencephalography, Ruth M. Swedler Jul 2012

Examining Lower Extremity Motor Activity Using Magnetoencephalography, Ruth M. Swedler

Master's Theses (2009 -)

The role of the cortex during locomotion remains unclear, but recent advances in neural imaging technologies have aided in developing ways to measure brain activity during motor tasks. One method is by measuring activations produced by neural oscillations which have been associated with a variety of human behaviors, from sleep and rest to cognitive actions and movement. The physiological and functional methods in which oscillations contribute to cortical control are still largely unknown. In this study, we aim to expand that knowledge by examining human cortical activity in the sensory and motor cortices during pedaling using magnetoencephalography (MEG). We hypothesized …


Eeg During Pedaling: Brain Activity During A Locomotion-Like Task In Humans, Sanket G. Jain Jan 2009

Eeg During Pedaling: Brain Activity During A Locomotion-Like Task In Humans, Sanket G. Jain

Master's Theses (2009 -)

This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. 64 channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble average waveforms, two dimensional topographic maps and amplitude of the beta (13-35 Hz) frequency band were analyzed and compared between active and passive trials. The absolute amplitude (peak positive-peak negative) of the EEG …