Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Astrodynamics

Relative Attitude Dynamics And Control Of Spacecraft Using Electrostatic Torque, John Galjanic Dec 2020

Relative Attitude Dynamics And Control Of Spacecraft Using Electrostatic Torque, John Galjanic

Doctoral Dissertations and Master's Theses

Recent years have seen an increased interest in spacecraft formation flying, with many applications requiring that the members of these formations maintain specific relative attitude configurations. One low-cost method that has been considered to accomplish this is the use of electrostatic torques, which are generated by charging the surfaces of involved spacecraft to allow interaction without physical contact. The research presented in this thesis analyzes a pair of cylindrical-bodied spacecraft operating in deep space. Specifically, the suitability of using electrostatic torques as an actuator to synchronize the two spacecraft's attitude responses is under consideration. The study considers a simplified case, …


Attitude Determination And Control Of Arksat-1, Jared Gilliam Dec 2020

Attitude Determination And Control Of Arksat-1, Jared Gilliam

Mechanical Engineering Undergraduate Honors Theses

ARKSAT-1 is a nanosatellite developed at the University of Arkansas as part of NASA’s CubeSat Launch Initiative (CSLI). The goal of ARKSAT-1 is to utilize an LED emitter paired with a ground-based tracking system to perform measurements of the composition of the atmosphere using spectroscopy. As part of its function, it is imperative that the satellite is able to control its orientation so that the emitter is aligned as closely as possible with the ground tracker. To do this, the attitude control system of ARKSAT-1 uses magnetic actuators to create a torque on the satellite by interacting with Earth’s magnetic …


Constrained Motion Analysis Of Spacecraft Trajectory In Restricted Three Body Problem, Harshkumar Patel Dec 2020

Constrained Motion Analysis Of Spacecraft Trajectory In Restricted Three Body Problem, Harshkumar Patel

Doctoral Dissertations and Master's Theses

Due to the popularity of libration points, many satellites are being maintained on their desired trajectory. Indian space research organization has planned to launch the Aditya-L1 spacecraft to study about the Sun by 2021. James Webb Space Telescope has also been designed to observe deep space at L2 in the Sun-Earth system by 2021. The combined gravity of the Earth and the Sun keep satellite’s orbit locked at libration points. Though satellites enjoys an uninterrupted view of Sun and Earth all the time, they are affected by the solar radiation pressure (SRP) continuously. Due to the instability of collinear libration …


Assessing Observer Stations For Cislunar Space Domain Awareness, Michael S. Rosenof Dec 2020

Assessing Observer Stations For Cislunar Space Domain Awareness, Michael S. Rosenof

Theses and Dissertations

With renewed worldwide interest in cislunar space, the need for reliable domain awareness in that extended region of space is clear. This investigation quantifies the suitability of several possible stations for observer satellites in cislunar space by calculating the specific irradiance each would observe as they track satellites in various realistic lunar free-return trajectories across a decade, using reflected sunlight. This investigation includes one class of free return trajectories for target satellites, eleven distinct observer stations, and three different metrics for comparing the effectiveness of each observer station or combination of observer stations for sensing targets using reflected sunlight. The …


Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy Dec 2020

Spacecraft Trajectory Optimization Suite (Stops): Design And Optimization Of Multiple Gravity-Assist Low-Thrust (Mgalt) Trajectories Using Modern Optimization Techniques, Michael G. Malloy

Master's Theses

The information presented in the thesis is a continuation of the Spacecraft Trajectory Optimization Suite (STOpS). This suite was originally designed and developed by Timothy Fitzgerald and further developed by Shane Sheehan, both graduate students at California Polytechnic State University, San Luis Obispo. Spacecraft utilizing low-thrust transfers are becoming more and more common due to their efficiency on interplanetary trajectories, and as such, finding the most optimal trajectory between two planets is something of interest. The version of STOpS presented in this thesis uses Multiple Gravity-Assist Low-Thrust (MGALT) trajectories paired with the island model paradigm to accomplish this goal. The …


B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef Dec 2020

B-Plane Targeting With The Spacecraft Trajectory Optimization Suite, Jared Graef

Master's Theses

In interplanetary trajectory applications, it is common to design arrival trajectories based on B-plane target values. This targeting scheme, B-plane targeting, allows for specific target orbits to be obtained during mission design. A primary objective of this work was to implement B-plane targeting into the Spacecraft Trajectory Optimization Suite (STOpS). This work was based on the previous versions of STOpS done by Fitzgerald and Sheehan, however STOpS was redeveloped from MATLAB to python. This updated version of STOpS implements 3-dimensional computation, departure and arrival orbital phase modeling with patched conics, B-plane targeting, and a trajectory correction maneuver. The optimization process …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty Dec 2020

Interplanetary Trajectory Optimization With Automated Fly-By Sequences, Emily Ann Doughty

Master's Theses

Critical aspects of spacecraft missions, such as component organization, control algorithms, and trajectories, can be optimized using a variety of algorithms or solvers. Each solver has intrinsic strengths and weaknesses when applied to a given optimization problem. One way to mitigate limitations is to combine different solvers in an island model that allows these algorithms to share solutions. The program Spacecraft Trajectory Optimization Suite (STOpS) is an island model suite of heterogeneous and homogeneous Evolutionary Algorithms (EA) that analyze interplanetary trajectories for multiple gravity assist (MGA) missions. One limitation of STOpS and other spacecraft trajectory optimization programs (GMAT and Pygmo/Pagmo) …


Limitations Of Initial Orbit Determination Methods For Low Earth Orbit Cubesats With Short Arc Orbital Passes, James P. Johnson Jul 2020

Limitations Of Initial Orbit Determination Methods For Low Earth Orbit Cubesats With Short Arc Orbital Passes, James P. Johnson

Master's Theses

This thesis will focus on the performance of angles only initial orbit determi- nation (IOD) methods on observational data of low Earth orbit (LEO) CubeSats. Using data obtained by Lockheed Martin’s Space Object Tracking (SpOT) facil- ity, four methods: Gauss, Double-R, Gooding and Assumed Circular, will use different amounts of orbital arc to determine which methods perform the best in the short arc regime of less than 10 degrees of orbital arc. Once the best method for estimating the orbit is determined, there will be analysis on whether these IOD methods are accurate enough to predict a secondary observation session. …


Initial Orbit Determination Error Analysis Of Low-Earth Orbit Rocket Body Debris And Feasibility Study For Debris Cataloguing From One Optical Facility, Kyle Stoker Jun 2020

Initial Orbit Determination Error Analysis Of Low-Earth Orbit Rocket Body Debris And Feasibility Study For Debris Cataloguing From One Optical Facility, Kyle Stoker

Master's Theses

This paper is predicated on determining the effectiveness of angles-only initial orbit determination (IOD) methods when limited observational data is available for low-Earth orbit (LEO) rocket body debris. The analysis will be conducted with data obtained from Lockheed Martin Space’s Space Object Tracking (SpOT) facility, focusing on their observational data from 2018 that contains tracking of rocket body debris for less than one minute per overhead pass. After the IOD accuracies are better understood, a feasibility study will follow that investigates the possibility of cataloguing LEO orbital debris from a single optical observation facility with similar observational capabilities as that …


Titan Aerogravity Assist For Saturn Orbital Insertion And Study Of Enceladus, Hannah Hajdik, Samantha Ramsey, Richard Andrew Wright, Nathan Stover, Jason Patel, Jonathan Spitznas, Nishant Lokanathan, James Evans Lyne May 2020

Titan Aerogravity Assist For Saturn Orbital Insertion And Study Of Enceladus, Hannah Hajdik, Samantha Ramsey, Richard Andrew Wright, Nathan Stover, Jason Patel, Jonathan Spitznas, Nishant Lokanathan, James Evans Lyne

Chancellor’s Honors Program Projects

No abstract provided.


Space-Based Localization Of Radio Frequency Transmitters Utilizing Macaulay Resultant And Heuristic Optimization Methods, Jessica M. Wightman Mar 2020

Space-Based Localization Of Radio Frequency Transmitters Utilizing Macaulay Resultant And Heuristic Optimization Methods, Jessica M. Wightman

Theses and Dissertations

This research focuses on radio frequency geolocation of space objects utilizing space-based platforms. Geolocation has long been the solution for locating objects. In particular, this study examines the scenario of two cooperative receivers geolocating a transmitter in close proximity. An algorithm is developed to calculate the initial estimated transmitter location and projected orbital trajectory. The algorithm uses the Macaulay method of solving a system of polynomials as well as heuristic optimization techniques to locate a transmitter with respect to receivers at different time intervals. For the scenarios investigated, both Macaulay and heuristic optimization methods achieve initial relative orbit determination.


Evaluation Framework For Cislunar Space Domain Awareness (Sda) Systems, Simon R. Knister Mar 2020

Evaluation Framework For Cislunar Space Domain Awareness (Sda) Systems, Simon R. Knister

Theses and Dissertations

Modern space missions are increasingly transiting cislunar space, requiring expansion of existing Space Traffic Management (STM) functions. Legacy Space Domain Awareness (SDA) systems were not purpose-built to detect and track cislunar objects, which could require acquisition of a new system of systems. There are numerous parameters that could be varied for each system, as well as the type and location of systems across the architecture. This research attempts to solve this problem by applying a model-based systems engineering (MBSE) approach to assess the performance and financial burden of a given system of systems. Fitness metrics are developed based upon the …


Linear Regression Models Applied To Imperfect Information Spacecraft Pursuit-Evasion Differential Games, Dax Linville Mar 2020

Linear Regression Models Applied To Imperfect Information Spacecraft Pursuit-Evasion Differential Games, Dax Linville

Theses and Dissertations

Within satellite rendezvous and proximity operations lies pursuit-evasion differential games between two spacecraft. The extent of possible outcomes can be mathematically bounded by differential games where each player employs optimal strategies. A linear regression model is developed from a large data set of optimal control solutions. The model is shown to map pursuer relative starting positions to final capture positions and estimate capture time. The model is 3.8 times faster than the indirect heuristic method for arbitrary pursuer starting positions on an initial relative orbit about the evader. The linear regression model is shown to be well suited for on-board …