Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Systems Engineering and Multidisciplinary Design Optimization

Optimization

Articles 1 - 3 of 3

Full-Text Articles in Astrodynamics

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Optimization And Design For Heavy Lift Launch Vehicles, Paul Andreas Ritter May 2012

Optimization And Design For Heavy Lift Launch Vehicles, Paul Andreas Ritter

Masters Theses

The simulation and evaluation of an orbital launch vehicle requires consideration of numerous factors. These factors include, but are not limited to the propulsion system, aerodynamic effects, rotation of the earth, oblateness, and gravity. A trajectory simulation that considers these different factors is generated by a code developed for this thesis titled Trajectories for Heavy-lift Evaluation and Optimization (THEO). THEO is a validated trajectory simulation code with the ability to model numerous launch configurations. THEO also has the capability to provide the means for an optimization objective. Optimization of a launch vehicle can be specified in terms of many different …


Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad Dec 2011

Comet: Constrained Optimization Of Multiple-Dimensions For Efficient Trajectories, Michael Curt Conrad

Master's Theses

The paper describes the background and concepts behind a master’s thesis platform known as COMET (Constrained Optimization of Multiple-dimensions for Efficient Trajectories) created for mission designers to determine and evaluate suitable interplanetary trajectories. This includes an examination of the improvements to the global optimization algorithm, Differential Evolution, through a cascading search space pruning method and decomposition of optimization parameters. Results are compared to those produced by the European Space Agency’s Advanced Concept Team’s Multiple Gravity Assist Program. It was found that while discrepancies in the calculation of ΔV’s for flyby maneuvers exist between the two programs, COMET showed a noticeable …