Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Systems Engineering and Multidisciplinary Design Optimization

2013

Articles 1 - 2 of 2

Full-Text Articles in Astrodynamics

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


Feasibility Of Microsatellite Active Debris Removal Systems, Karsten J. James Jun 2013

Feasibility Of Microsatellite Active Debris Removal Systems, Karsten J. James

Master's Theses

Space debris has become an increasingly hazardous obstacle to continued spaceflight operations. In an effort to mitigate this problem an investigation of the feasibility of a microsatellite active debris removal system was conducted. Through proposing a novel concept of operation, utilizing a grapple-and-tug system architecture, and by analyzing each resultant mission phase in the frame of a representative example, it was found that microsatellite scale systems are capable of fulfilling the active debris removal mission. Analysis of rendezvous, docking, control and deorbit mission requirements determined that the design of a grapple-and-tug system will be driven by sizing of the propellant …