Open Access. Powered by Scholars. Published by Universities.®

Astrodynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Astrodynamics

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell May 2022

Optimization Of Orbital Trajectories Using Neuroevolution Of Augmenting Topologies, Nathan Wetherell

University Scholar Projects

This project aims to determine the feasibility of using NeuroEvolution of Augmenting Topologies (NEAT), an advanced neural network evolution scheme, to optimize orbital transfer trajectories. More specifically, this project compares a genetically evolved neural network to a standard Hohmann transfer between Earth and Mars. To test these two methods, an N-body simulation environment was created to accurately determine the result of gravitational interactions on a theoretical spacecraft when combined with planned engine burns. Once created, this simulation environment was used to train the neural networks created using the NEAT Python module. A genetic algorithm was used to modify the topology …