Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical properties

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 91 - 120 of 287

Full-Text Articles in Engineering

Editorial: Structure And Mechanical Properties Of Titanium Alloys And Titanium Matrix Composites (Tmcs), Lechun Xie, Liqiang Wang, Lai-Chang Zhang, Weijie Lu Apr 2020

Editorial: Structure And Mechanical Properties Of Titanium Alloys And Titanium Matrix Composites (Tmcs), Lechun Xie, Liqiang Wang, Lai-Chang Zhang, Weijie Lu

Research outputs 2014 to 2021

No abstract provided.


Strain Components In Friction Stir Extrusion, Megan Ryan Apr 2020

Strain Components In Friction Stir Extrusion, Megan Ryan

Theses and Dissertations

Friction stir extrusion is a solid state process that uses a rotating die to perform extrusions. This process can be used to directly recycle waste from machining processes and has been shown to produce wires with desirable mechanical properties. In order to better understand the friction stir extrusion process, the effect of the process parameters on the strain distribution in the wires needs to be understood. The process parameters evaluated in this work are die advance rate, die rotational seed, and die geometry. A total of 16 wires were extruded using different combinations of these process parameters. Marker wires were …


Influence Of Cr Content On The Microstructure And Mechanical Properties Of Crxfenicu High Entropy Alloys, Hao Wu, Sirui Huang, Chengyan Zhu, Heguo Zhu, Zonghan Xie Apr 2020

Influence Of Cr Content On The Microstructure And Mechanical Properties Of Crxfenicu High Entropy Alloys, Hao Wu, Sirui Huang, Chengyan Zhu, Heguo Zhu, Zonghan Xie

Research outputs 2014 to 2021

© 2020 Chinese Materials Research Society The effect of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys (HEAs) was firstly studied by first-principles calculations. The calculated results show that the hardness of the alloys increased with the expense of its plasticity decrease, if the content of Cr in the alloy increased. In order to verify the calculated results, CrxFeNiCu (x = 0.8, 1, 1.5 and 2) high entropy alloys were synthesized by vacuum induction melting in the present study. The results show that as the value of x increased from 0.8 to 2, the crystal …


Manufacturing And Characterization Of Glass Fiber-Fishnet-Woven Roving And Polyester Composites, S. Sahaya Elsi, F. Michael Raj, Mary S. Prince, A. Amala Mithin Minther Singh, R. S. Jayaram Feb 2020

Manufacturing And Characterization Of Glass Fiber-Fishnet-Woven Roving And Polyester Composites, S. Sahaya Elsi, F. Michael Raj, Mary S. Prince, A. Amala Mithin Minther Singh, R. S. Jayaram

Journal of Marine Science and Technology

Glass fibers are imparted as reinforcement material in polyester matrix and still it act as a preferred material for the marine industry. However, it is non-biodegradable material and involves high risk during processing. In this study, new monofilament fishnets were substituted as an alternative material for glass fiber in the polyester matrix. Mechanical properties of these composite specimens such as tensile strength, flexural strength and impact resistance in accordance with ASTM, were evaluated. SEM images of various composites revealed the relations between the reinforced fishnet/glass fiber and woven roving with polyester matrix. The dynamic mechanical analysis of storage modulus, loss …


Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza Jan 2020

Effect Of Cobalt In Thin Wall Ductile Iron And Solid Solution Strengthened Ferritic Ductile Iron, Alejandra I. Almanza

Dissertations, Master's Theses and Master's Reports

Ductile Iron is a material that is constantly evolving. Consequently, the ferrous industry is not only focusing on lightweighting but also on improving the impact strength and fracture toughness of typical ferritic-pearlitic ductile iron grades and solid solution strengthened ferritic ductile irons. Recently, the demand for thin-wall ductile iron and solid solution strengthened ferritic ductile iron grades has increased. The challenges behind the fabrication of these two ductile iron materials are the presence of carbides and the embrittlement of ferrite. In response, research has been focused on looking at alternative methods that can mitigate carbide formation in thin sections and …


Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker Jan 2020

Hierarchical Mechanisms Of Lateral Interactions In High- Performance Fibers, Taylor A, Stockdale, Daniel P. Cole, Jeffrey M. Staniszewski, Michael R. Roenbeck, Dimitry Papkov, Steve R. Lustig, Youris A. Dzenis, Kenneth E. Strawhecker

Department of Mechanical and Materials Engineering: Faculty Publications

The processing conditions used in the production of advanced polymer fibers facilitate the formation of an oriented fibrillar network that consists of structures spanning multiple length scales. The irregular nature of fiber tensile fracture surfaces suggests that their structural integrity is defined by the degree of lateral (interfacial) interactions that exist within the fiber microstructure. To date, experimental studies have quantified interfacial adhesion between nanoscale fibrils measuring 10−50 nm in width, and the global fracture energy through applying peel loads to fiber halves. However, a more in-depth evaluation of tensile fracture indicates that fiber failure typically occurs at an intermediate …


Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia Jan 2020

Microstructure And Mechanical Behavior Of Metastable Beta Type Titanium Alloys, Chirag Dhirajlal Rabadia

Theses: Doctorates and Masters

Current biomaterials such as stainless steel, Co-Cr alloys, commercially pure titanium and Ti-6Al- 4V either possess poor mechanical compatibility and/or produce toxic effects in the human body after several years of usage. Consequently, there is an enormous demand for long-lasting biomaterials which provide a better combination of mechanical, corrosion and biological properties. In addition to this, alloys used in high-strength applications possess either high-strength or large plasticity. However, a high-strength alloy should possess a better blend of both strength and plasticity when used in high-strength applications. Metastable β-titanium alloys are the best suited alloys for biomedical and high-strength applications because …


Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield Dec 2019

Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield

Faculty Publications

The purpose of this study is to quantify the detrimental effects of atomic oxygen and ultraviolet (UV) C radiation on the mechanical properties, electrical conductivity, and piezoresistive effect of acid-spun carbon nanotube (CNT) yarns. Monotonic tensile tests with in-situ electrical resistance measurements were performed on pristine and exposed yarns to determine the effects of the atomic oxygen and UVC exposures on the yarn’s material properties. Both type of exposures were performed under vacuum to simulate space environment conditions. The CNT yarns’ mechanical properties did not change significantly after being exposed to UV radiation, but were significantly degraded by the atomic …


Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dispersion Characteristics., Mahyar Ramezani Aug 2019

Design And Predicting Performance Of Carbon Nanotube Reinforced Cementitious Materials : Mechanical Properties And Dispersion Characteristics., Mahyar Ramezani

Electronic Theses and Dissertations

Recently, Carbon Nanotubes (CNTs) are drawing considerable attention of researchers for reinforcing cementitious materials due to their excellent mechanical properties and high aspect ratio (length-to-diameter ratio). However, CNTs might not disperse well within the cement matrix, resulting in little improvement or even degradation of concrete properties. The uncertainty in producing the consistent results in different studies might be attributed to multiple interactions between the experimental variables affecting the nanotube dispersion and the final properties of CNT-cement nanocomposites. Therefore, this research mainly focused on proposing equations that can reliably capture these interactions in order to correlate CNT dispersion with the mechanical …


Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon Aug 2019

Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spider silk has received significant attention due to its fascinating mechanical properties. Given the solitary and cannibalistic behavior of spiders, spider silk farming is impractical. Unlike spiders, silkworms are capable of producing large quantities of a fibrous product in a manner mimetic to spiders, and there already exists an industry to process cocoons into threads and textiles for many applications. The combination of silk farming (sericulture), a millennia old practice, and modern advancements in genetic engineering has given rise to an innovative biomaterial inspired by nature; transgenic silkworm silk.

This project focuses on the creation of chimeric silkworm-spider silk fibers …


Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu Jul 2019

Investigation Of Through Thickness Microstructure And Mechanical Properties In Friction Stir Welded 7n01 Aluminum Alloy Plate, Xingxin Zhao, Zhiyong Yang, Joseph P. Domblesky, Jianmin Han, Zhiqiang Li, Xiaolong Liu

Mechanical Engineering Faculty Research and Publications

An on-going problem in friction stir welded (FSW) joints used in the high-speed train sector is that the microstructure and mechanical properties can significantly vary in thick sections. Because inhomogeneous properties can reduce weld efficiency and degrade service performance, it is of some interest to understand how inhomogeneous properties can develop in FSW welds made from precipitation hardening alloys such as 7N01. In the current study, butt welds were made using 12 mm thick plates and then sectioned perpendicular to the weld line. Five 2.2 mm thick slices were cut from a section and used to measure tensile properties access …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi May 2019

Influence Of Mechanical Properties Of Paper Coating On The Crack At The Fold Problem, Seyyed Mohammad Hashemi Najafi

Electronic Theses and Dissertations

Paper coating layers are subject to various stresses and deformations in many converting processes such as calendering, printing, slitting, and folding of the paper. In some cases, products may crack during folding to generate a defect called cracking at the fold (CAF). The parameters that influence these defects are not well understood. The overall goal of this thesis is to better understand the CAF behavior as related to material properties of the coating layer.

A method was developed to produce free-standing pigmented coating layers thick enough to be tested in bending as well as tension. The mechanical properties of these …


Mechanical Characterization And Fracture Behavior Of Magnesium Zk60a Alloy (Uns M16600), Mohamed Kamal I. H. Temraz May 2019

Mechanical Characterization And Fracture Behavior Of Magnesium Zk60a Alloy (Uns M16600), Mohamed Kamal I. H. Temraz

Theses

This research work focuses on studying the mechanical and fracture behavior of one of magnesium ZK60A (UNS M16600) extrusion. The material has many industrial applications and its characteristic should be measured for proper component or system design. Several tests were conducted following the standard procedures to determine the mechanical characteristics of the material. In addition, the fracture toughness of the material has been measured using the fracture toughness-thickness curve. A stress intensity factor K was used as a fracture parameter to determine the plane strain fracture toughness KIC of ZK60A magnesium alloy using a single edge notch bend (SENB) specimen …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski Apr 2019

Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski

Electronic Thesis and Dissertation Repository

Hydrogels contain high amount of water allowing their use as surrogates to human tissues with specific properties that can be tuned by additives. Gellan gum is a gel-forming material of interest and is a replacement for other common gelling agent with limited use as a tissue phantom. Therefore, this thesis examines the application of gellan gum gels as a novel magnetic resonance imaging (MRI) phantom with a design of experiments model to obtain tunable properties. The analysis was extended to include mechanical and electrical properties with a separate design of experiment. Gels doped with synthesized superparamagnetic iron oxide nanoparticles (SPIONs) …


The Effect Of Fine And Coarse Recycled Aggregates On Fresh And Mechanical Properties Of Self-Compacting Concrete, Mahmoud Nili, Hossein Sasanipour, Farhad Aslani Apr 2019

The Effect Of Fine And Coarse Recycled Aggregates On Fresh And Mechanical Properties Of Self-Compacting Concrete, Mahmoud Nili, Hossein Sasanipour, Farhad Aslani

Research outputs 2014 to 2021

Today, the use of recycled aggregates as a substitute for a part of the natural aggregates in concrete production is increasing. This approach is essential because the resources for natural aggregates are decreasing in the world. In the present study, the effects of recycled concrete aggregates as a partial replacement for fine (by 50%) and coarse aggregates (by 100%) were examined in the self-compacting concrete mixtures which contain air-entraining agents and silica fumes. Two series of self-compacting concrete mixes have been prepared. In the first series, fine and coarse recycled mixtures respectively with 50% and 100% replacement with air entraining …


Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso Mar 2019

Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso

Research outputs 2014 to 2021

Heavyweight self-compacting concrete (HWSCC) and heavyweight geopolymer concrete (HWGC) are new types of concrete that integrate the advantages of heavyweight concrete (HWC) with self-compacting concrete (SCC) and geopolymer concrete (GC), respectively. The replacement of natural coarse aggregates with magnetite aggregates in control SCC and control GC at volume ratios of 50%, 75%, and 100% was considered in this study to obtain heavyweight concrete classifications, according to British standards, which provide proper protection from sources that emit harmful radiations in medical and nuclear industries and may also be used in many offshore structures. The main aim of this study is to …


Sintering Behavior, Structural, And Catalytic Properties Of Ytterbium Oxide (Yb2o3), Alina Aftab Jan 2019

Sintering Behavior, Structural, And Catalytic Properties Of Ytterbium Oxide (Yb2o3), Alina Aftab

Honors Undergraduate Theses

Ytterbia (Yb2O3) is an oxide ceramic, whose magnetic properties and crystal structure were studied to some extent in the past. However, the information on Yb2O3's catalytic properties is lacking. Therefore, in this work, the sintering behavior and catalytic properties of Yb2O3 were examined. Yb2O3 ceramic samples were made using pressureless sintering of the commercially available Yb2O3 with 99.99% purity powder. The powder was first uniaxially pressed at 20 MPa in a steel die followed by pressureless sintering at different temperatures of 900 ⁰C …


Increasing Mechanical Properties Of A Double Network Hydrogel From Polyacrylamide And Agar With Methylenebisacrylamide As A Photocrosslinker, Madelyn Jeske Jan 2019

Increasing Mechanical Properties Of A Double Network Hydrogel From Polyacrylamide And Agar With Methylenebisacrylamide As A Photocrosslinker, Madelyn Jeske

Williams Honors College, Honors Research Projects

Double Network hydrogels are three dimensional networks of a soft, mechanically tough material that have been used for drug delivery, agriculture, adhesives, and other widely applicable uses. Using the one-pot method, a single hydrogel can be produced in 3 hours as opposed to the once demonstrated three days. It has been found that with a first, physically cross linked network and a second, chemically cross linked, hybrid double network hydrogels exhibit high mechanical properties and are freeshapeable. Agar is a thermoreversible organic molecule with a triple helix structure that provides an excellent first network that organizes into aggregate bundles once …


Fire Performance Of Heavyweight Self-Compacting Concrete And Heavyweight High Strength Concrete, Farhad Aslani, Fatemeh Hamidi, Qilong Ma Jan 2019

Fire Performance Of Heavyweight Self-Compacting Concrete And Heavyweight High Strength Concrete, Farhad Aslani, Fatemeh Hamidi, Qilong Ma

Research outputs 2014 to 2021

In this study, the fresh and hardened state properties of heavyweight self-compacting concrete (HWSCC) and heavyweight high strength concrete (HWHSC) containing heavyweight magnetite aggregate with 50, 75, and 100% replacement ratio, and their performance at elevated temperatures were explored experimentally. For fresh-state properties, the flowability and passing ability of HWSCCs were assessed by using slump flow, T500 mm, and J-ring tests. Hardened-state properties including hardened density, compressive strength, and modulus of elasticity were evaluated after 28 days of mixing. High-temperature tests were also performed to study the mass loss, spalling of HWSCC and HWHSC, and residual mechanical properties at 100, …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …


Development Of Cardanol-Based Epoxy Coating, Nicholas Pottschmidt Jan 2019

Development Of Cardanol-Based Epoxy Coating, Nicholas Pottschmidt

Williams Honors College, Honors Research Projects

The purpose of this project was to determine the suitability of cardanol glycidyl ether (CGE) as a substitute for trimethylolpropane triglycidyl ether (TMPGE) as the reactive diluent in epoxy coatings. CGE may be a naturally-derived alternative to TMPGE, which is a commonly-used petroleum-derived reactive diluent. Epoxy coatings were formulated with CGE replacing increasing amounts of TMPGE in the formulation. Corrosion protection provided by the coatings was evaluated with electrochemical impedance spectroscopy (EIS). Mechanical properties of the coatings (hardness, flexibility, adhesion, and impact resistance) were evaluated with applicable ASTM standards.

EIS results revealed the coating formulated with only CGE had superior …


Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale Jan 2019

Development Of Stage-I Tempered High Strength Cast Steel For Ground Engaging Tools, Viraj Ashok Athavale

Doctoral Dissertations

"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series were …


Effect Of Si And C Additions On The Reaction Mechanism And Mechanical Properties Of Fecrnicu High Entropy Alloy, Hao Wu, Sirui Huang, Huan Qiu, Heguo Zhu, Zonghan Xie Jan 2019

Effect Of Si And C Additions On The Reaction Mechanism And Mechanical Properties Of Fecrnicu High Entropy Alloy, Hao Wu, Sirui Huang, Huan Qiu, Heguo Zhu, Zonghan Xie

Research outputs 2014 to 2021

FeCrNiCu based high entropy alloy matrix composites were fabricated with addition of Si and C by vacuum electromagnetic induction melting. The primary goal of this research was to analyze the reaction mechanism, microstructure, mechanical properties at room temperature and strengthening mechanism of the composites with addition of Si and C. The reaction mechanism of powders containing (Si, Ni and C) was analyzed, only one reaction occurred (i.e., Si + C → SiC) and its activation energy is 1302.8 kJ/mol. The new composites consist of a face centered cubic (FCC) structured matrix reinforced by submicron sized SiC particles. The addition of …


Processing And Properties Of Multifunctional Two-Dimensional Nanocomposite Based On Single Wall Carbon Nanotubes, Ali M. Al Mafarage Jan 2019

Processing And Properties Of Multifunctional Two-Dimensional Nanocomposite Based On Single Wall Carbon Nanotubes, Ali M. Al Mafarage

Browse all Theses and Dissertations

Truly single layer (monolayer) films of unmodified zigzag single-walled carbon nanotubes by using the Langmuir-Blodgett (LB) technique have been processed successfully. Measurements of their mechanical and optoelectric properties were achieved. Different theoretical equations were used based on the results obtained from the experimental part to study the properties and structures of the produced material and their composite. The produced films were highly oriented as determined by polarized Raman spectroscopy and as shown by scanning tunneling microscopy (STM). The films have a significant amount of flexibility which makes their behavior similar to rubbery materials. They can also be deposited on different …


Properties And Mechanisms Of Self-Sensing Carbon Nanofibers/Epoxy Composites For Structural Health Monitoring, Yanlei Wang, Yongshuai Wang, Baolin Wan, Baoguo Han, Gaochuang Cai, Zhizheng Li Sep 2018

Properties And Mechanisms Of Self-Sensing Carbon Nanofibers/Epoxy Composites For Structural Health Monitoring, Yanlei Wang, Yongshuai Wang, Baolin Wan, Baoguo Han, Gaochuang Cai, Zhizheng Li

Civil and Environmental Engineering Faculty Research and Publications

In this paper, carbon nanofibers (CNFs) with high aspect ratio were dispersed into epoxy matrix via mechanical stirring and ultrasonic treatment to fabricate self-sensing CNFs/epoxy composites. The mechanical, electrical and piezoresistive properties of the nanocomposites filled with different contents of CNFs were investigated. Based on the tunneling conduction and percolation conduction theories, the mechanisms of piezoresistive property of the nanocomposites were also explored. The experimental results show that adding CNFs can effectively enhance the compressive strengths and elastic moduli of the composites. The percolation threshold of the CNFs/epoxy composites is 0.186 vol% according to the modified General Effective Media Equation. …


Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai Aug 2018

Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The application of bulk metallic glasses (BMGs) has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. This research exemplifies a promising additive manufacturing method, i.e., laser-foil-printing (LFP), to fabricate high-quality BMG parts with large dimensions and complex geometries. In this study, Zr52.5Ti5Al10Ni14.6Cu17.9 BMG parts were fabricated by LFP technology in which MG foils are laser welded layer-by- layer upon a substrate. The mechanical properties of the fabricated BMG parts were measured using micro-indentation, tensile test …


Aging Response And Precipitation Behavior After 5% Pre-Deformation Of An Al-Mg-Si-Cu Alloy, Shuoxun Jin, Tungwai Ngai, Liejun Li, Shian Jia, Tongguang Zhai, Dongjie Ke Aug 2018

Aging Response And Precipitation Behavior After 5% Pre-Deformation Of An Al-Mg-Si-Cu Alloy, Shuoxun Jin, Tungwai Ngai, Liejun Li, Shian Jia, Tongguang Zhai, Dongjie Ke

Chemical and Materials Engineering Faculty Publications

In this study, Al-1.00 Mg-0.65 Si-0.24 Cu alloy was solution heat-treated, water-quenched, and then pre-deformed for 5% before aging. The peak hardness and yield strength of the pre-deformed sample with subsequent artificial aging were similar to that of a T6 condition sample. It was also found that the pre-deformation treatment could inhibit the negative influence of natural aging to some degree. After seven days of natural aging, the pre-deformed sample obtained better peak hardness and yield strength upon artificial aging than the sample without pre-deformation. In addition, the pre-deformation treatment could reduce 50% of the artificial aging time to reach …


Eco-Efficient Preplaced Recycled Aggregate Concrete Incorporating Recycled Tire Waste Rubber Granules And Steel Wire Fibre Reinforcement, Saud A. Alfayez Aug 2018

Eco-Efficient Preplaced Recycled Aggregate Concrete Incorporating Recycled Tire Waste Rubber Granules And Steel Wire Fibre Reinforcement, Saud A. Alfayez

Electronic Thesis and Dissertation Repository

With increasing world population and urbanization, the depletion of natural resources and generation of waste materials is becoming a considerable challenge. As the number of humans has exceeded 7 billion people, there are about 1.1 billion vehicles on the road, with 1.7 billion new tires produced and over 1 billion waste tires generated each year. In the USA, it was estimated in 2011 that 10% of scrap tires was being recycled into new products, and over 50% is being used for energy recovery, while the rest is being discarded into landfills or disposed. The proportion of tires disposed worldwide into …