Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Compressive strength

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 115

Full-Text Articles in Engineering

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath Mar 2024

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar Feb 2024

Understanding Roles And Evaluating Reactivity Of Fly Ashes In Calcium Aluminate Binders, Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Calcium aluminate cement (CAC) is an alternative to Portland cement, valued for its superior early strength and thermal resistance. Partially replacing CAC with Fly ash (FA) can reduce carbon footprint and production costs of CAC, producing sustainable cementitious binders. This research investigates on various properties (i.e., hydration kinetics; phase assemblage evolution; compressive strength) of [CAC + FA] binders. Using 13 distinct FAs, up to 50% of CAC was substituted. The study measures hydration kinetics, compressive strength, and employs the number of constraints to estimate FA reactivity. Advanced quantitative analysis draws links between hydration kinetics and compressive strength and elucidate the …


The Mechanical Performance Of Sustainable High Performance Concrete Containing Hybrid Polypropylene Fibers And Exposed To Elevated Temperatures, Ahmed M. Tahwia, Marwa M. Ouda, Mohamed Abdellatief, Walid E. Elemam Jan 2024

The Mechanical Performance Of Sustainable High Performance Concrete Containing Hybrid Polypropylene Fibers And Exposed To Elevated Temperatures, Ahmed M. Tahwia, Marwa M. Ouda, Mohamed Abdellatief, Walid E. Elemam

Mansoura Engineering Journal

The purpose of this research is to investigate the impact of hybrid micro and macro polypropylene fibers (PPFs) on the mechanical characteristics and microstructure of high performance concrete (HPC). Seven concrete mixes with different contents of hybrid polypropylene fibers were tested. The tests included the slump test, compressive and flexural strength, resistance to elevated temperatures, and concrete microstructure. Compared to the control mixture, introducing macro and micro polypropylene hybrid fibers to HPC mixes dramatically enhanced the flexural and compressive strength of concrete while lowering workability. HPC compressive and flexural strengths decrease as temperature rises, nevertheless, the strength loss rate was …


Assessment Of The Mechanical And Durability Characteristics Of Bio-Mineralized Bacillus Subtilis Self-Healing Concrete Blended With Hydrated Lime And Brick Powder, Mohd Abu Bakr, Birendra Kumar Singh, Ahmed Farouk Deifalla, Shatrudhan Pandey, Ahmed Hussain, Sahir Sultan Alvi, S.M. Mozammil Hasnain Dec 2023

Assessment Of The Mechanical And Durability Characteristics Of Bio-Mineralized Bacillus Subtilis Self-Healing Concrete Blended With Hydrated Lime And Brick Powder, Mohd Abu Bakr, Birendra Kumar Singh, Ahmed Farouk Deifalla, Shatrudhan Pandey, Ahmed Hussain, Sahir Sultan Alvi, S.M. Mozammil Hasnain

Civil Engineering Faculty Publications and Presentations

Highlights

  • The present paper studied the effect of biomineralization on the properties of HBr concrete.

  • Strength and durability properties are improved by calcite precipitation produced by bacteria.

  • CaCO3 Precipitation was confirmed in the microstructure analysis through FESEM and EDS.

Abstract

Cement is the main constituent of the concrete structure. Using rejected brick as pozzolana in replacement of cement reduced the utilization of natural resources, conserved the environment, and controlled waste disposal. Hydrated lime has been utilized as a chemical additive to improve the pozzolanic reaction of finely ground waste brick particles. This research investigates the process of biomineralization to enhance …


On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar Oct 2023

On The Prediction Of The Mechanical Properties Of Limestone Calcined Clay Cement: A Random Forest Approach Tailored To Cement Chemistry, Taihao Han, Bryan K. Aylas-Paredes, Jie Huang, Ashutosh Goel, Narayanan Neithalath, Aditya Kumar

Materials Science and Engineering Faculty Research & Creative Works

Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder's carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models' prediction performance and interpretability. This …


Preparation And Characteristics Of Inorganic Curing Foam With Large-Volume Fly Ash In Goaf, Ma Li, Du Su, Zhang Zhaoyun, Wang Hui, Zhao Liang, Zhang Bo Apr 2023

Preparation And Characteristics Of Inorganic Curing Foam With Large-Volume Fly Ash In Goaf, Ma Li, Du Su, Zhang Zhaoyun, Wang Hui, Zhao Liang, Zhang Bo

Coal Geology & Exploration

Air leakage in the goaf of coal mine is an important cause of coal fire disaster. The traditional filling and plugging materials are easy to crack, with poor fluidity and high cost. Therefore, it is necessary to develop new materials for effective filling and plugging of the air leakage channels. Herein, the new filling and plugging material of inorganic curing foam with large-volume fly ash was developed by optimizing the mix ratio based on material fluidity, initial setting time and compressive strength using the single factor variable method. Meanwhile, the material hydration process was characterized by the infrared spectroscopy, X-ray …


Synergistic Effect Of Hedp.4na And Different Induced Pouring Angles On Mechanical Properties Of Fiber-Reinforced Alkali-Activated Slag Composites, Jingjie Wei, Jianwei Liu, Kamal Khayat, Wu Jian Long Mar 2023

Synergistic Effect Of Hedp.4na And Different Induced Pouring Angles On Mechanical Properties Of Fiber-Reinforced Alkali-Activated Slag Composites, Jingjie Wei, Jianwei Liu, Kamal Khayat, Wu Jian Long

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The Poor Flexural and Damping Properties of Building Materials Damages Concrete Structures and Affects their Service Life When Concrete Structures Are Subjected to Dynamic Loads. Three Different Dosages (I.e., 0%, 0.3%, and 0.6%) of Organic Phosphonates (HEDP.4Na) and Different Pouring Methods (I.e., Conventional Pouring Method, 90°-Induced Pouring Method, and 150°-Induced Pouring Method) Were Designed to Improve the Flexural and Damping Performance of Fiber-Reinforced Alkali-Activated Slag Composites (FR-AASC). the Enhanced Mechanism of HEDP.4Na Was Revealed by Phase Analysis (X-Ray Diffraction, XRD), Pore Structure Analysis (Mercury Intrusion Porosimetry, MIP), the Heat of Hydration, and Scanning Electron Microscopy (SEM) Analysis. the Results Showed …


Compressive And Tensile Properties Of Three Fiber-Lime-Soils Under Freeze-Thaw Cycle, Li Wei, Shou-Xi Chai, Lin Zhang, Yao Li Feb 2023

Compressive And Tensile Properties Of Three Fiber-Lime-Soils Under Freeze-Thaw Cycle, Li Wei, Shou-Xi Chai, Lin Zhang, Yao Li

Rock and Soil Mechanics

Generally, synthetic fiber, mineral fiber and plant fiber are added into soil to enhance the strength and deformation resistance of soil. The unconfined compressive test and splitting tensile test of three fiber-lime-soils under freeze-thaw cycle were carried out to study the variation of compressive and tensile properties of soil with freeze-thaw times. The test results showed that the optimum fiber rates of polypropylene fiber-lime-soil, basalt fiber-lime-soil and palm fiber-lime-soil were 0.2%, 0.2%, and 0.4% respectively, whether under freeze-thaw cycle or not. With the increase of freeze-thaw times, the compressive strength and tensile strength of the three fiber-lime-soils demonstrated phased downward …


Behaviour And Material Properties Of Versaloc Semi-Interlocking Mortarless Masonry, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Tatheer Zahra, Alireza Mohyeddin Feb 2023

Behaviour And Material Properties Of Versaloc Semi-Interlocking Mortarless Masonry, Sonam Dorji, Hossein Derakhshan, David P. Thambiratnam, Tatheer Zahra, Alireza Mohyeddin

Research outputs 2022 to 2026

Masonry construction is popular around the world, but the use of mortared masonry presents numerous challenges. In recent decades, masonry construction systems incorporating interlocking masonry units have been proposed to eliminate mortar. The interlocking between masonry units can be achieved using specially shaped units. This paper presents a comprehensive experimental study to determine the behaviour as well as basic material properties of one such semi-interlocking mortarless masonry. The experiments included testings of ungrouted masonry units, prisms, and wallets. In addition, masonry prisms and wallets with grouted cores were also investigated to study the effect of grouting. A detailed description of …


The Compressive Strength And Microstructure Of Alkali-Activated Mortars Utilizing By-Product-Based Binary-Blended Precursors, Otman M. M. Elbasir, Megat A. M. Johari, Zainal A. Ahmad, Nuha S. Mashaan, Abdalrhman Milad Jan 2023

The Compressive Strength And Microstructure Of Alkali-Activated Mortars Utilizing By-Product-Based Binary-Blended Precursors, Otman M. M. Elbasir, Megat A. M. Johari, Zainal A. Ahmad, Nuha S. Mashaan, Abdalrhman Milad

Research outputs 2022 to 2026

Researchers have investigated the feasibility of using ultrafine palm oil fuel ash (u-POFA) as a cement replacement material because of its potential to reduce the environmental impact of concrete production. u-POFA, a by-product of palm oil fuel combustion, is a suitable replacement for Portland cement in concrete mixes because of its sustainability and cost-effectiveness. This study investigated the microstructural and compressive strengths of alkali-activated mortars (AAMs) based on fly ash (FA) and granulated blast-furnace slag (GBFS) being added with varying percentages of u-POFA. The mixture samples were prepared in eighteen mortars using sodium metasilicate (Na2SiO3) as the source material and …


Concrete Mix Design Using Abrams And Bolomey Methods, Salem Abdelgader, Marzena Kurpinska, Hakim Abdelgader, Jamal Khatib Dec 2022

Concrete Mix Design Using Abrams And Bolomey Methods, Salem Abdelgader, Marzena Kurpinska, Hakim Abdelgader, Jamal Khatib

BAU Journal - Science and Technology

This research studied concrete design methods. To design concrete using two methods, including the Abrams law and the modified Bolomey method. Concrete with assumed compressive strength 25, 30, 35, 40, and 45 MPa was researched. The research was conducted in the laboratory using two types of samples: cubic 15x15x15cm for compressive strength tests and cylinders ϕ-15cm, h-30cm for the splitting strength tests using the Brazilian method.

The analysis of the cement content in the composition of 1m3 of the mixture showed very large differences depending on the calculation method used. The cement content calculated according to the Abrams method ranged …


Optimization Of Mixture Parameter For Physical And Mechanical Properties Of Reactive Powder Concrete Under External Sulfate Attack Using Taguchi Method, Umut Bakhbergen, Chang Seon Shon, Dichuan Zhang, Jong Ryeol Kim, Jenny Liu Oct 2022

Optimization Of Mixture Parameter For Physical And Mechanical Properties Of Reactive Powder Concrete Under External Sulfate Attack Using Taguchi Method, Umut Bakhbergen, Chang Seon Shon, Dichuan Zhang, Jong Ryeol Kim, Jenny Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Reactive powder concrete (RPC) is defined as a cementitious composite material with an optimized size of granular constituents, very low water-to-binder ratio (w/b), pozzolanic materials like silica fume (SF), and discontinuous fiber reinforcement. RPC applications include bridge decks and girders, seismic columns, wind turbine towers, and pile foundations. Especially, a durable and robust RPC pile foundation with long service life is essential in building construction because continuous maintenance is impossible. Moreover, natural in-situ conditions such as water table, temperature, and sulfate concentration in soil to which the pile foundation is exposed are critical and related to deteriorating the pile foundation. …


Non-Destructive Evaluation Of Mortar With Ground Granulated Blast Furnace Slag Blended Cement Using Ultrasonic Pulse Velocity, Chi Kang Loke, Barry Lehane, Farhad Aslani, Subhra Majhi, Abhijit Mukherjee Oct 2022

Non-Destructive Evaluation Of Mortar With Ground Granulated Blast Furnace Slag Blended Cement Using Ultrasonic Pulse Velocity, Chi Kang Loke, Barry Lehane, Farhad Aslani, Subhra Majhi, Abhijit Mukherjee

Research outputs 2022 to 2026

Non-destructive evaluation using ultrasonic pulse velocity (Vp) testing has extensive applications in the concrete industry. With advances in construction technology, the use of ground granulated blast furnace slag (GGBFS) as a partial replacement to cement in a concrete mix is growing in popularity primarily because it reduces the initial capital cost of raw materials and the associated energy costs. This paper investigates the effect of the water-to-cement (wc) ratio and the cement content replaced by GGBFS on the development with time of the ultimate compressive strength ((Formula presented.)) and the compression wave velocity (V …


A Novel Iron Phosphate Cement Derived From Copper Smelting Slag And Its Early Age Hydration Mechanism, Yunlong Luo, Xintao Zhou, Zhongqiu Luo, Hongyan Ma, Yu Wei, Qin Liu Oct 2022

A Novel Iron Phosphate Cement Derived From Copper Smelting Slag And Its Early Age Hydration Mechanism, Yunlong Luo, Xintao Zhou, Zhongqiu Luo, Hongyan Ma, Yu Wei, Qin Liu

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Copper slag (CS), a by-product of copper smelting, is normally stockpiled, leading to wastes of resource and space as well as environment pollution. It has not been massively reutilized as a supplementary cementitious material in Portland cement due to its low reactivity. In the present study, CS is for the first time utilized as the base component to prepare an iron phosphate cement (IPC) by reacting with ammonium dihydrogen phosphate (ADP) at room temperature. The influence of the raw materials mass ratio (CS/ADP) on the microstructure and performance of IPC pastes are investigated. It is found that the compressive strength …


Technical And Economic Viability Of Distributed Recycling Of Low-Density Polyethylene Water Sachets Into Waste Composite Pavement Blocks, Celestin Tsala-Mbala, Koami Soulemane Hayibo, Theresa K. Meyer, Nadine Couao-Zotti, Paul Cairns, Joshua M. Pearce Oct 2022

Technical And Economic Viability Of Distributed Recycling Of Low-Density Polyethylene Water Sachets Into Waste Composite Pavement Blocks, Celestin Tsala-Mbala, Koami Soulemane Hayibo, Theresa K. Meyer, Nadine Couao-Zotti, Paul Cairns, Joshua M. Pearce

Michigan Tech Publications

In many developing countries, plastic waste management is left to citizens. This usually results in landfilling or hazardous open-air burning, leading to emissions that are harmful to human health and the environment. An easy, profitable, and clean method of processing and transforming the waste into value is required. In this context, this study provides an open-source methodology to transform low-density polyethylene drinking water sachets, into pavement blocks by using a streamlined do-it-yourself approach that requires only modest capital. Two different materials, sand, and ashes are evaluated as additives in plastic composites and the mechanical strength of the resulting blocks are …


Physico-Mechanical Characterization Of Prototype Earth Block Material For Constitutive Modeling, Erika Lorena Rengifo-López Oct 2022

Physico-Mechanical Characterization Of Prototype Earth Block Material For Constitutive Modeling, Erika Lorena Rengifo-López

Theses and Dissertations

The comprehensive understanding and experimental characterization of the overall compressive behavior of earth masonry block materials, such as compressed and stabilized earth blocks (CSEBs), are essential for developing analytical and numerical tools to predict the mechanical response and designing earth masonry structures. Furthermore, advancing the understanding of the extent of the influence of testing parameters on the material's response, such as specimen geometry, is a critical step towards standardization.

CSEBs are produced by compressing a mixture of soil, water, and a stabilizer (e.g., Portland cement). The heterogeneity of the material accrues from the variety of soil particle morphology and potential …


Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar Jun 2022

Predicting Compressive Strength Of Alkali-Activated Systems Based On The Network Topology And Phase Assemblages Using Tree-Structure Computing Algorithms, Rohan Bhat, Taihao Han, Sai Akshay Ponduru, Arianit Reka, Jie Huang, Gaurav Sant, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated system is an environment-friendly, sustainable construction material utilized to replace ordinary Portland cement (OPC) that contributes to 9% of the global carbon footprint. Moreover, the alkali-activated system has exhibited superior strength at early ages and better corrosion resistance compared to OPC. The current state of analytical and machine learning models cannot produce highly reliable predictions of the compressive strength of alkali-activated systems made from different types of aluminosilicate-rich precursors owing to substantive variation in the chemical compositions and reactivity of these precursors. In this study, a random forest model with two constraints (i.e., topological network and thermodynamic constraints) is …


Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar Jun 2022

Machine Learning Enabled Closed-Form Models To Predict Strength Of Alkali-Activated Systems, Taihao Han, Eslam Gomaa, Ahmed Gheni, Jie Huang, Mohamed Elgawady, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Alkali-activated mortar (AAM) is an emerging eco-friendly construction material, which can complement ordinary Portland cement (OPC) mortars. Prediction of properties of AAMs—albeit much needed to complement experiments—is difficult, owing to substantive batch-to-batch variations in physicochemical properties of their precursors (i.e., aluminosilicate and activator solution). In this study, a machine learning (ML) model is employed; and it is shown that the model—once trained and optimized—can reliably predict compressive strength of AAMs solely from their initial physicochemical attributes. Prediction performance of the model improves when multiple compositional descriptors of the aluminosilicate are combined into a singular, composite chemostructural descriptor (i.e., network ratio …


Evaluating The Effects Of Curing Methods On Bcsa Cement Concrete, Hannah Allen May 2022

Evaluating The Effects Of Curing Methods On Bcsa Cement Concrete, Hannah Allen

Civil Engineering Undergraduate Honors Theses

BCSA cement is a type of cement that makes concrete set up much quicker than typical portland cement concrete. BCSA cement concrete also has a much higher compressive strength than that of portland cement concrete. This study was conducted to determine the effect of different curing conditions on the compressive strength of BCSA cement concrete.


Mechanical Properties Of Saline Soil Solidified With Lime, Fly Ash And Modified Polyvinyl Alcohol Under Freeze-Thaw Cycles, Min Li, He-Miao Yu, Hong-Pu Du, Bao-Yu Cao, Shou-Xi Chai Apr 2022

Mechanical Properties Of Saline Soil Solidified With Lime, Fly Ash And Modified Polyvinyl Alcohol Under Freeze-Thaw Cycles, Min Li, He-Miao Yu, Hong-Pu Du, Bao-Yu Cao, Shou-Xi Chai

Rock and Soil Mechanics

The repeated freeze-thaw cycles with seasonal alternations have an obvious effect on soil structure. To reduce the temperature sensitivity of saline soil and then use it in engineering, a combined treatment method is proposed, where lime, fly ash and modified polyvinyl alcohol (MPA) are used as solidified materials. Unconfined compressive strength (UCS) tests and microstructure characterization are firstly used to evaluate the solidified effect and obtain the parameters range of solidified materials. Then, the shear strength tests for determining cohesion and internal friction angle are conducted. Experiments are conducted by considering separate and combined treatments of materials mentioned above. The …


Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh Jan 2022

Solute Concentration Effects On Microstructure And The Compressive Strength Of Ice-Templated Sintered Lithium Titanate, Rohan Parai, Ziyang Nie, Raina Hempley, Gary M. Koenig Jr., Dipankar Ghosh

Mechanical & Aerospace Engineering Faculty Publications

This work investigated the role of sucrose and cationic dispersant (1‐hexadecyl)trimethylammonium bromide concentration on ice‐templated sintered lithium titanate microstructure and compressive strength, to enable a comprehensive understanding of composition selection and elucidate processing–microstructure–mechanical property relationships. Sucrose and dispersant concentrations were varied to change total solute concentration in suspensions and viscosity. Dispersant was more effective in reducing viscosity than sucrose; however, their combination had an even greater impact on reducing viscosity. Based on viscosity measurements, a total of 12 suspension compositions were developed, and materials were fabricated at two different freezing front velocity (FFV) regimes. Solute concentration greatly influenced ice‐templated microstructure …


Shear Strength Of Concrete Beams Made With Belitic Calcium Sulfoaluminate Cement, Caleb W. Chesnut Dec 2021

Shear Strength Of Concrete Beams Made With Belitic Calcium Sulfoaluminate Cement, Caleb W. Chesnut

Graduate Theses and Dissertations

The need for a cleaner alternative to portland cement (PC) concrete has led to increasing interest in alternatives to PC. Structural properties of most of these alternative cements are still an open research topic. One promising alternative cement is belitic calcium sulfoaluminate (BCSA) cement. The study presented in this paper investigated the shear strength, long term compressive strength, and carbonation in BCSA cement and PC concrete beams. A total of twelve eight-foot long beams were made; eight BCSA cement concrete beams and four PC concrete beams to be tested at various ages depending on cement type. Two beams of each …


Prediction Model For Compressive Strength Of Rock-Steel Fiber Reinforced Concrete Composite Layer, Meng Chen, Xiu-Wen Cui, Xin Yan, Hao Wang, Er-Lei Wang Jul 2021

Prediction Model For Compressive Strength Of Rock-Steel Fiber Reinforced Concrete Composite Layer, Meng Chen, Xiu-Wen Cui, Xin Yan, Hao Wang, Er-Lei Wang

Rock and Soil Mechanics

To study the uniaxial compressive strength calculation method of rock-steel fiber reinforced concrete (R-SFRC) composite layer, uniaxial compression test was carried out on rock, steel fiber reinforced concrete and R-SFRC composite layer specimens. The influence of concrete strength grades (C30, C40 and C50) and fiber contents (0, 40, 60 and 80 kg/m3) on the uniaxial compressive strength of steel fiber reinforced concrete and composite layers was analyzed. RFPA2D was utilized to simulate the damage process and stress-strain curve of the composite layer under uniaxial compression. The compressive strength prediction model of R-SFRC composite layer was established based on Mohr-Coulomb yield …


Mechanical Characteristics Of Cement Paste In The Presence Of Carbon Nanotubes And Silica Oxide Nanoparticles: An Experimental Study, Moses Karakouzian, Visar Farhangi, Marzieh R. Farani, Alireza Joshaghani, Mehdi Zadehmohamad, Mohammad Ahmadzadeh Mar 2021

Mechanical Characteristics Of Cement Paste In The Presence Of Carbon Nanotubes And Silica Oxide Nanoparticles: An Experimental Study, Moses Karakouzian, Visar Farhangi, Marzieh R. Farani, Alireza Joshaghani, Mehdi Zadehmohamad, Mohammad Ahmadzadeh

Civil and Environmental Engineering and Construction Faculty Research

Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared using three different portions of MWCNT and NS. …


Possible Use For Recycled Disposable Face Masks In Concrete, Lauren Douglas Mar 2021

Possible Use For Recycled Disposable Face Masks In Concrete, Lauren Douglas

Construction Management

Disposable face masks are one of many single use products that are detrimental to the environment. The construction industry has been introducing new ways to incorporate recycled products into their materials. This paper addresses one possible way to use more environmentally friendly materials in the construction industry. 16 concrete cylinders were prepared using 4x8 forms. The mix was manipulated to test the impact of incorporating varying levels of disposable shredded face masks. Compressive strength and workability were measured in these cylinders. Eight cylinders were prepared for the control batch. Four cylinders were prepared using 10 oz. of shredded face masks …


Predicting The Effect Of Fly Ash On Concrete’S Mechanical Properties By Ann, Mohammad Mehdi Roshani, Seyed Hamidreza Kargar, Visar Farhangi, Moses Karakouzian Jan 2021

Predicting The Effect Of Fly Ash On Concrete’S Mechanical Properties By Ann, Mohammad Mehdi Roshani, Seyed Hamidreza Kargar, Visar Farhangi, Moses Karakouzian

Civil and Environmental Engineering and Construction Faculty Research

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. Fly ash, as a supplemental pozzolanic material, reduces concrete’s adverse environmental footprint by decreasing the emission of carbon dioxide (CO2 ) during the cement manufacturing process. Fly ash, which is a waste material, can enhance both the mechanical characteristics and durability of concrete, and has the capability to play an important role in sustainable design. Considering the widespread interest in applying Fly ash, and despite research studies, the level of replacement is still unclear. In this paper, a novel method using artificial neural networks (ANN) is presented to predict concrete’s mechanical …


Effect Of Using Cathode-Ray Tubes (Crt) Waste Glass On Concrete Properties, Jad Bawab, Jamal Khatib, Ali Jahami, Said Kenai, Adel Elkordi Dec 2020

Effect Of Using Cathode-Ray Tubes (Crt) Waste Glass On Concrete Properties, Jad Bawab, Jamal Khatib, Ali Jahami, Said Kenai, Adel Elkordi

BAU Journal - Science and Technology

Cathode-ray tube (CRT) glass is a hazardous material that should be responsibly managed when disposed. One of the possible options for recycling CRT waste glass is using it as fine aggregates in concrete for its richness in silica. For the aim of evaluating concrete with this material, four mixes with replacement levels of 0%, 10%, 20% and 30% are prepared. Workability, hardened density, ultra-pulse velocity, compressive strength, tensile strength, and static modulus of elasticity were examined. Experimental results showed that the use of CRT improved properties of concrete at certain replacement levels. CRT glass improved the workability of concrete where …


The Impact Of Grinding Time On Properties Of Cement Mortar Incorporated High Volume Waste Paper Sludge Ash, Ali A. Shubbar, Monower Sadique, Mohammed S. Nasr, Zainab S. Al-Khafaji, Khalid S. Hashim Dec 2020

The Impact Of Grinding Time On Properties Of Cement Mortar Incorporated High Volume Waste Paper Sludge Ash, Ali A. Shubbar, Monower Sadique, Mohammed S. Nasr, Zainab S. Al-Khafaji, Khalid S. Hashim

Karbala International Journal of Modern Science

Cement is considered a base material in preparing blending mixtures that applying in various projects in the civil engineering field. Nevertheless, the cement production process cause indubitable negative environmental influences such as emitting CO2. The production of cement produces around 7% of the global CO2 emissions. Thus, searching for alternate binders in building processes to minimise or substitute cement has been one of the social problems. A by-product or waste products are among the potential alternatives to the mentioned problem. The present investigation involves the consumption of paper sludge ash (PSA) waste as cement replacement to produce …


Using Bcsa Cement To Repair Waterway Transportation Structures, Anazaria Johanis Ortega Gonzalez Dec 2020

Using Bcsa Cement To Repair Waterway Transportation Structures, Anazaria Johanis Ortega Gonzalez

Graduate Theses and Dissertations

Many maritime structures (e.g., locks, dams, ports) in the US are either reaching or are past their design lives, and there are limited funds for the necessary maintenance activities which can lead to repairs that requires closures. These structures are not easy to detour and often require dewatering before repairs can be made, closures can cause delays and business-related losses which can have a large effect on the nation’s economy. Thus, it is advantageous to reduce the repair time for maritime structures. BCSA (belitic calcium sulfoaluminate) cement is a promising material to perform this type of repair due to its …


Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo Dec 2020

Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo

Graduate Theses and Dissertations

With the emergence of Additive Manufacturing (i.e., 3D printing) in construction, new strategically designed shapes can be created to improve load transfer through structural members and foundations. Cross-sections can be optimized to carry load using less material, or even using weaker constituent materials, like soils, which are cheap and abundant. The goal of this research is to investigate the benefits of using cellular patterns which leverage biomimicry in civil engineering applications, since nature has perfectly engineered materials and patterns which carry loads with the least amount of material possible. Most of the periodic cellular work to date has focused on …