Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

3-D printing

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 60

Full-Text Articles in Engineering

Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce Mar 2018

Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce

Joshua M. Pearce

Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical …


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Mar 2018

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Joshua M. Pearce

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, …


Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce Mar 2018

Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce

Joshua M. Pearce

The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV) powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT) is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA) filament or 2.5 …


Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce Mar 2018

Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce

Joshua M. Pearce

As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood …


Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce Mar 2018

Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Rapid manufacturing using 3-D printing is a potential solution to some of the most pressing issues for humanitarian logistics. In this paper, findings are reported from a study that involved development of a new type of 3-D printer. In particular, a novel 3-D printer that is designed specifically for reliable rapid manufacturing at the sites of humanitarian crises. First, required capabilities are developed with design elements of a humanitarian 3-D printer, which include, (1) fused filament fabrication, (2) open source self-replicating rapid prototyper design, (3) modular, (4) separate frame, (5) protected electronics, (6) on-board computing, (7) flexible power supply, and …


Effect Of Knit And Print Parameters On Peel Strength Of Hybrid 3-D Printed Textiles, Ayushi Narula, Christopher M. Pastore, David Schmelzeisen, Sara El Basri, Jan Schenk, Subin Shajoo Feb 2018

Effect Of Knit And Print Parameters On Peel Strength Of Hybrid 3-D Printed Textiles, Ayushi Narula, Christopher M. Pastore, David Schmelzeisen, Sara El Basri, Jan Schenk, Subin Shajoo

Kanbar College Faculty Papers

The influence of knit fabric structure on the adhesion of three-dimensional (3-D) printed textiles was examined. 3-Dprinting was applied to different elastic knitted fabrics with different amounts of prestretch, typical for 4-D fabric construction. The quality of the bond was measured in terms of peel strength. Peel strength was measured by pulling the fabric at 180 degrees from the printed plastic to delaminate the 2 and recording the 10 highest peak values observed during the test. The printed width, the ratio of fabric width of print width, fabric washing, and fabric structure were varied. The specimens were then evaluated for …


Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar Nov 2017

Direct Digital Manufacturing Of Multi-Layer Wideband Ku-Band Patch Antennas, Merve Kacar

USF Tampa Graduate Theses and Dissertations

Design and performance of fully-printed Ku-band aperture coupled patch antennas fabricated by a direct digital manufacturing (DDM) approach that integrates fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) thermoplastic with in-situ micro-dispensing of conductive silver paste (CB028) are reported. Microstrip line characterizations are performed and demonstrate that misalignment of ABS substrate deposition direction with microstrip line micro-dispensing direction can degrade the effective conductivity up to 60% within the Ku-band, and must be taken into consideration in antenna array feed network designs. Specically, over 125 µm thick ABS substrate, RF loss of 0.052 dB/mm is obtained at 18 GHz, demonstrating …


Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce Oct 2017

Distributed Manufacturing Of Flexible Products: Technical Feasibility And Economic Viability, Aubrey Woern, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Distributed manufacturing even at the household level is now well established with the combined use of open source designs and self-replicating rapid prototyper (RepRap) 3-D printers. Previous work has shown substantial economic consumer benefits for producing their own polymer products. Now flexible filaments are available at roughly 3-times the cost of more conventional 3-D printing materials. To provide some insight into the potential for flexible filament to be both technically feasible and economically viable for distributed digital manufacturing at the consumer level this study investigates 20 common flexible household products. The 3-D printed products were quantified by print time, electrical …


Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce Sep 2017

Open Source 3-D Printed Nutating Mixer, Dhwani K. Trivedi, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood …


Three Hundred And Sixty Degree Real-Time Monitoring Of 3-D Printing Using Computer Analysis Of Two Camera Views, Siranee Nuchitprasitchai, Michael C. Roggemann, Joshua M. Pearce Jul 2017

Three Hundred And Sixty Degree Real-Time Monitoring Of 3-D Printing Using Computer Analysis Of Two Camera Views, Siranee Nuchitprasitchai, Michael C. Roggemann, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Prosumer (producing consumer)-based desktop additive manufacturing has been enabled by the recent radical reduction in 3-D printer capital costs created by the open-source release of the self-replicating rapid prototype (RepRap). To continue this success, there have been some efforts to improve reliability, which are either too expensive or lacked automation. A promising method to improve reliability is to use computer vision, although the success rates are still too low for widespread use. To overcome these challenges an open source low-cost reliable real-time optimal monitoring platform for 3-D printing from double cameras is presented here. This error detection system is implemented …


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Jul 2017

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Department of Materials Science and Engineering Publications

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, …


Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce Jun 2017

Energy Payback Time Of A Solar Photovoltaic Powered Waste Plastic Recyclebot System, Shan Zhong, Pratiksha Rakhe, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV) powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT) is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA) filament or 2.5 …


Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce May 2017

Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce

Joshua M. Pearce

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated systems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers specifically, is presented that enables web-based three dimensional control of additive, subtractive and analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from a web interface; it uses a custom protocol which allows it to continue printing when the connection is temporarily lost, and allows communication with scripts.


Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce May 2017

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce

Joshua M. Pearce

To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s …


Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce May 2017

Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce

Joshua M. Pearce

Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested …


Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce May 2017

Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce

Joshua M. Pearce

Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in thermoplastic and a cost analysis was performed through comparison to comparable, commercially available products at a low and high price range. When compared to the low-cost items, investment …


Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro Mar 2017

Engineered Nanocomposite Materials For Microwave/Millimeter-Wave Applications Of Fused Deposition Modeling, Juan De Dios Castro

USF Tampa Graduate Theses and Dissertations

A variety of high-permittivity (high-k) and low-loss ceramic-thermoplastic composite materials as fused deposition modeling (FDM) feedstock, based on cyclo-olefin polymer (COP) embedded with sintered ceramic fillers, have been developed and investigated for direct digital manufacturing (DDM) of microwave components. The composites presented in this dissertation use a high-temperature sintering process up to 1500°C to further enhance the dielectric properties of the ceramic fillers. The electromagnetic (EM) properties of these newly developed FDM composites were characterized up to the Ku-band by using the cavity perturbation technique. Several models for prediction of the effective relative dielectric permittivity of composites based …


Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce Feb 2017

Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in thermoplastic and a cost analysis was performed through comparison to comparable, commercially available products at a low and high price range. When compared to the low-cost items, investment …


Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto Jan 2017

Utilizing Reprap Style 3d Printers For The Manufacturing Of Composite Heat Exchangers, John Laureto

Dissertations, Master's Theses and Master's Reports

The low cost 3D printing market is currently dominated by the application of RepRap (self-replicating rapid-prototyper) variants. Presented in this document are practical utilizations of RepRap technology. Developed are innovative processes to manufacture composite materials systems for thermal management solutions.

First, a laser polymer welder system is validated by quantifying maximum peak load and weld width of linear low density polyethylene (LLDPE) lap welds as a function of linear energy density. The development of practical engineering data, in this application, is critical to producing mechanically durable welds. Developed laser and printer parameter sets allow for manufacturing of LLDPE multi-layered heat …


Study Of Oxidative-Crosslink Reaction In Polyphenyl Sulfide (Pps) / Carbon Fiber And Its Influence In Additive Manufacturing, Dong Hee Kim, Eduardo Barocio, Bastian Brenken, Anthony Favaloro, Byron Pipes Aug 2016

Study Of Oxidative-Crosslink Reaction In Polyphenyl Sulfide (Pps) / Carbon Fiber And Its Influence In Additive Manufacturing, Dong Hee Kim, Eduardo Barocio, Bastian Brenken, Anthony Favaloro, Byron Pipes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ever since its development in 1980s, Fused Filament Fabrication (FFF) has been an attractive additive manufacturing technology due to its flexibility to create intricate shapes at lower costs and faster manufacturing process than subtractive techniques. These advantages make FFF suitable for printing molds for use in traditional composites manufacturing processes. Combining FFF with high-temperature thermoplastic composites enables producing molds that not only sustain autoclave conditions but also have low coefficient of thermal expansion (CTE). A semi-crystalline polymer, Poly-phenylene Sulfide (PPS), with 50% by weight of carbon fiber is used as feedstock material for FFF. Nonetheless, PPS is sensitive to undergo …


Integrating Nanosphere Lithography In Device Fabrication, Tod V. Laurvick, Ronald A. Coutu Jr., Robert A. Lake Mar 2016

Integrating Nanosphere Lithography In Device Fabrication, Tod V. Laurvick, Ronald A. Coutu Jr., Robert A. Lake

Electrical and Computer Engineering Faculty Research and Publications

This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. …


Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce Jan 2016

Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated systems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers specifically, is presented that enables web-based three dimensional control of additive, subtractive and analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from a web interface; it uses a custom protocol which allows it to continue printing when the connection is temporarily lost, and allows communication with scripts.


High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce Jan 2016

High-Efficiency Solar-Powered 3-D Printers For Sustainable Development, Jephias Gwamuri, Dhiogo Franco, Khalid Khan, Lucia Gauchia, Joshua M. Pearce

Michigan Tech Publications

The release of the open source 3-D printer known as the RepRap (a self-Replicating Rapid prototyper) resulted in the potential for distributed manufacturing of products for significantly lower costs than conventional manufacturing. This development, coupled with open source-appropriate technology (OSAT), has enabled the opportunity for 3-D printers to be used for sustainable development. In this context, OSAT provides the opportunity to modify and improve the physical designs of their printers and desired digitally-shared objects. However, these 3-D printers require electricity while more than a billion people still lack electricity. To enable the utilization of RepRaps in off-grid communities, solar photovoltaic …


Experimental Investigations Of Fused Filament Fabrication For Applications To Affordable Scientific Hardware, Bas Wijnen Jan 2016

Experimental Investigations Of Fused Filament Fabrication For Applications To Affordable Scientific Hardware, Bas Wijnen

Dissertations, Master's Theses and Master's Reports

This research aims to make science more accessible through the use of open source 3-D printers.

A new control system for CNC machines in general and 3-D printers specifically, is developed and presented that enables web-based control of 3-D tools from any Internet connected device. The system can be set up and controlled entirely from a web interface.

A tool was designed to help apply science to the developing world. The developing world remains plagued by lack of access to safe drinking water. A methodology is provided for the design, development, and technical validation of a low-cost open-source water testing …


3-D Printed Conveyor For Continuous-Mode Cryopreservation Of Individual Samples, Melissa Kaye Eskridge Jan 2016

3-D Printed Conveyor For Continuous-Mode Cryopreservation Of Individual Samples, Melissa Kaye Eskridge

LSU Master's Theses

Lack of standardization of terminology and protocols, combined with limited access to freezing equipment due to cost constraints and lack of portability, has created a need for inexpensive cryopreservation devices. Distribution of standardized methods of freezing cells would enable the development and adoption of standards on materials and protocols. Some cryopreservation methods are limited by the amount of cells available and the toxicity of certain cryopreservation agents. These studies would benefit from the ability to cool individual samples. All commercially available and proposed cooling devices operate by cooling batches of samples at the same time. The cryopreservation conveyor was designed …


Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce Nov 2015

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s …


Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce Jun 2015

Low-Cost Open-Source Voltage And Current Monitor For Gas Metal Arc Weld 3d Printing, Anthony Pinar, Bas Wijnen, Gerald C. Anzalone, Timothy C. Havens, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested …


3d Printing In Healthcare, Caleb Branch May 2015

3d Printing In Healthcare, Caleb Branch

The Review: A Journal of Undergraduate Student Research

Technology is everywhere. Technology surrounds every aspect of 21st century life. It is in the cell phones we use, the cars we drive, and even the food we eat. A large portion of modern technology used is taken for granted and overlooked. Despite this, some technology fields continue to grow. Biomedical engineering, specifically 3D printing’s applications to healthcare, has been often overlooked until. Regardless of its status in the mainstream, 3D printing is prosperous in healthcare and its future looks bright. This piece analyzes 3D printing in healthcare. It hones in on the finer details of each specific topic, …


Intellectual Property Issues In The Network Cloud: Virtual Models And Digital Three-Dimensional Printers, Darrell G. Mottley Jan 2014

Intellectual Property Issues In The Network Cloud: Virtual Models And Digital Three-Dimensional Printers, Darrell G. Mottley

Journal of Business & Technology Law

No abstract provided.


The 6th Mode Of Transportation, Robert O. Walton Jan 2014

The 6th Mode Of Transportation, Robert O. Walton

Publications

The five modes of freight transportation are normally characterized as motor carriers, railroads, airlines, water carriers, and pipelines. This paper will attempt to position the Internet as the sixth mode of transportation. This paper compares the strengths and weaknesses of the traditional five modes of transportation against the proposed 6th mode of the Internet. Without including the Internet as a mode of transportation, and tracking the economic value that it adds to the economy, the economic impact of the Internet as a mode is not considered. The recommendation of this study is that the Internet should be added to the …