Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements To Future Developments, Yu-Wei Cui, Liqiang Wang, Lai-Chang Zhang Aug 2024

Towards Load-Bearing Biomedical Titanium-Based Alloys: From Essential Requirements To Future Developments, Yu-Wei Cui, Liqiang Wang, Lai-Chang Zhang

Research outputs 2022 to 2026

The use of biomedical metallic materials in research and clinical applications has been an important focus and a significant area of interest, primarily owing to their role in enhancing human health and extending human lifespan. This article, particularly on titanium-based alloys, explores exceptional properties that can address bone health issues amid the growing challenges posed by an aging population. Although stainless steel, magnesium-based alloys, cobalt-based alloys, and other metallic materials are commonly employed in medical applications, limitations such as toxic elements, high elastic modulus, and rapid degradation rates limit their widespread biomedical applications. Therefore, titanium-based alloys have emerged as top-performing …


Recent Innovations In Laser Additive Manufacturing Of Titanium Alloys, Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Lai-Chang Zhang, Y. Morris Wang, Ilya V. Okulov, Hongmei Zhu, Chaolin Tan Jun 2024

Recent Innovations In Laser Additive Manufacturing Of Titanium Alloys, Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Lai-Chang Zhang, Y. Morris Wang, Ilya V. Okulov, Hongmei Zhu, Chaolin Tan

Research outputs 2022 to 2026

Titanium (Ti) alloys are widely used in high-tech fields like aerospace and biomedical engineering. Laser additive manufacturing (LAM), as an innovative technology, is the key driver for the development of Ti alloys. Despite the significant advancements in LAM of Ti alloys, there remain challenges that need further research and development efforts. To recap the potential of LAM high-performance Ti alloy, this article systematically reviews LAM Ti alloys with up-to-date information on process, materials, and properties. Several feasible solutions to advance LAM Ti alloys are reviewed, including intelligent process parameters optimization, LAM process innovation with auxiliary fields and novel Ti alloys …


Characterization Of Chopped Carbon Fiber Reinforced Composites Produced Using Fused Deposition Modeling, Jonathon Tran, Rachel Shubella May 2024

Characterization Of Chopped Carbon Fiber Reinforced Composites Produced Using Fused Deposition Modeling, Jonathon Tran, Rachel Shubella

Student Research Symposium

Fused deposition modeling (FDM) is an additive manufacturing (AM) process which can create parts with complex geometries in their final shape without need for additional specialized tools or devices. The FDM process builds parts by adding material layer by layer only where it is needed, saving energy, costs, production time for complex parts, and minimizing waste. Fiber reinforcement can significantly enhance the mechanical properties of a polymer material and depends significantly on the fiber length distribution and fiber orientation distribution of the final part. In this research, we investigated the various infill patterns of FDM printed Markforged onyx which is …


Novel Vector Assignment Approach For Inherent Strain Modeling Of Laser Powder Bed Fusion Manufacturing, Lucas M. Morand May 2024

Novel Vector Assignment Approach For Inherent Strain Modeling Of Laser Powder Bed Fusion Manufacturing, Lucas M. Morand

All Dissertations

The expansion of the design space due to additive manufacturing (AM) has been a large motivator for the success of this family of processes. Despite the complexity of the physics in metal laser powder bed fusion AM causing significant stresses and strains in finished parts, the design advantages and subsequent performance improvements continue to drive the expansion of AM. Because the trial-and-error approach to AM part development is cost prohibitive, simulation of prints has become crucial. However, full thermo-mechanical simulation is susceptible to the same pitfall of time and computational cost in order to attain part-scale results. The development of …


Multi-Scale Modeling Of Selective Laser Sintering: From Manufacturing Process And Microstructure To Mechanical Performance In Semi-Crystalline Thermoplastics, Cameron Zadeh May 2024

Multi-Scale Modeling Of Selective Laser Sintering: From Manufacturing Process And Microstructure To Mechanical Performance In Semi-Crystalline Thermoplastics, Cameron Zadeh

All Dissertations

Selective laser sintering is an additive manufacturing process that opens many design possibilities but is limited in its reliability and reproducibility. Numerical simulations validated by experimental data yield insights into the process and resulting part properties, allowing users to make more informed decisions. In this dissertation, a model for the process and microstructure is developed and validated, followed by a coupling to mechanical models to predict part performance. Further developments include a new addition of a reaction kinetics model to the process model to describe the interplay between thermal degradation and melt pool properties, and an exploration of the parameter …


Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou Mar 2024

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Scalmalloy® is an Al-Mg-Sc-Zr-Based Alloy Specifically Developed for Additive Manufacturing (AM). This Alloy is Designed for Use with a Direct Aging Treatment, as Recommended by the Manufacturer, Rather Than with a Multistep Treatment, as Often Seen in Conventional Manufacturing. Most Work with Scalmalloy® is Conducted using Powder Bed Rather Than Powder-Fed Processes. This Investigation Seeks to Fill This Knowledge Gap and Expand Beyond Single-Step Aging to Promote an overall Balanced AM-Fabricated Component. for This Study, Directed Energy Deposition (DED)-Fabricated Scalmalloy® Components Were Subjected to Low-Temperature Treatments to Minimize Residual Stresses Inherent in the Material Due to the Layer-By-Layer Build Process. …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Integration Of Infrared Thermography And Deep Learning For Real-Time In-Situ Defect Detection And Rapid Elimination Of Defect Propagation In Material Extrusion, Asef Ishraq Sadaf Jan 2024

Integration Of Infrared Thermography And Deep Learning For Real-Time In-Situ Defect Detection And Rapid Elimination Of Defect Propagation In Material Extrusion, Asef Ishraq Sadaf

Electronic Theses and Dissertations

This study presents a novel approach to overcoming process reliability challenges in Material Extrusion (ME), a prominent additive manufacturing (AM) technique. Despite ME's advantages in cost, versatility, and rapid prototyping, it faces significant barriers to commercial-scale production, primarily due to quality issues such as overextrusion and underextrusion, which compromise final part performance. Traditional manual monitoring methods severely lack the capability to efficiently detect these defects and highlight the necessity for an efficient and real-time monitoring solution. Considering these challenges, an innovative and field-deployable infrared thermography-based in-situ real-time defect detection and feedback control system is proposed in this thesis. A novel …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen Jan 2024

Additive Manufacturing Of Novel Lightweight Insulation Refractory With Hierarchical Pore Structures By Direct Ink Writing, Saisai Li, Jiaxuan Xin, Ruoyu Chen, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

A direct ink writing process using fly ash foaming slurries was employed for the additive manufacturing of lightweight mullite insulation refractory with hierarchical pore structures. The viscosity, thixotropy, and shear thinning behavior of the inks were analyzed to investigate the effect of the inorganic binder and dispersant of the foaming inks. A slurry exhibiting excellent rheological characteristics was identified, consisting of 45 wt% fly ash floating beads, 55 wt% water, 3.0 wt% additional dispersant, and 6.0 wt% additional binder. Furthermore, through the optimization of printing parameters such as printing pressure and printing speed, notable enhancements were achieved in the pore …