Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Machine learning

Discipline
Institution
Publication
Publication Type
File Type

Articles 31 - 60 of 125

Full-Text Articles in Engineering

A Datacentric Algorithm For Gamma-Ray Radiation Anomaly Detection In Unknown Background Environments, James M. Ghawaly Jr Aug 2020

A Datacentric Algorithm For Gamma-Ray Radiation Anomaly Detection In Unknown Background Environments, James M. Ghawaly Jr

Doctoral Dissertations

The detection of anomalous radioactive sources in environments characterized by a high level of variation in the background radiation is a challenging problem in nuclear security. A variety of natural and artificial sources contribute to background radiation dynamics including variations in the absolute and relative concentrations of naturally occurring radioisotopes in different materials, the wet-deposition of $^{222}$Rn daughters during precipitation, and background suppression due to physical objects in the detector scene called ``clutter." This dissertation presents a new datacentric algorithm for radiation anomaly detection in dynamic background environments. The algorithm is based on a custom deep neural autoencoder architecture called …


Signal Processing Combined With Machine Learning For Biomedical Applications, Md Shakhawat Hossain Aug 2020

Signal Processing Combined With Machine Learning For Biomedical Applications, Md Shakhawat Hossain

Theses and Dissertations

The Master’s thesis is comprised of four projects in the realm of machine learning and signal processing. The abstract of the thesis is divided into four parts and presented as follows,

Abstract 1: A Kullback-Leibler Divergence-Based Predictor for Inter-Subject Associative BCI.

Inherent inter-subject variability in sensorimotor brain dynamics hinders the transferability of brain-computer interface (BCI) model parameters across subjects. An individual training session is essential for effective BCI control to compensate for variability. We report a Kullback-Leibler Divergence (KLD)-based predictor for inter-subject associative BCI. An online dataset comprising left/right hand, both feet, and tongue motor imagery tasks was used to …


Assessing The Prevalence Of Suspicious Activities In Asphalt Pavement Construction Using Algorithmic Logics And Machine Learning, Mostofa Najmus Sakib Aug 2020

Assessing The Prevalence Of Suspicious Activities In Asphalt Pavement Construction Using Algorithmic Logics And Machine Learning, Mostofa Najmus Sakib

Boise State University Theses and Dissertations

Quality Control (QC) and Quality Assurance (QA) is a planned systematic approach to secure the satisfactory performance of Hot mix asphalt (HMA) construction projects. Millions of dollars are invested by government and state highway agencies to construct large-scale HMA construction projects. QC/QA is statistical approach for checking the desired construction properties through independent testing. The practice of QC/QA has been encouraged by the Federal Highway Administration (FHWA) since the mid 60’s. However, the standard QC/QA practice is often criticized on how effective such statistical tests and how representative the reported material tests are. Material testing data alteration in the HMA …


Detection Of Stealthy False Data Injection Attacks Against State Estimation In Electric Power Grids Using Deep Learning Techniques, Qingyu Ge Aug 2020

Detection Of Stealthy False Data Injection Attacks Against State Estimation In Electric Power Grids Using Deep Learning Techniques, Qingyu Ge

Theses and Dissertations

Since communication technologies are being integrated into smart grid, its vulnerability to false data injection is increasing. State estimation is a critical component which is used for monitoring the operation of power grid. However, a tailored attack could circumvent bad data detection of the state estimation, thus disturb the stability of the grid. Such attacks are called stealthy false data injection attacks (FDIAs). This thesis proposed a prediction-based detector using deep learning techniques to detect injected measurements. The proposed detector adopts both Convolutional Neural Networks and Recurrent Neural Networks, making full use of the spatial-temporal correlations in the measurement data. …


Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark Aug 2020

Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark

Industrial Engineering Undergraduate Honors Theses

One of the most common tools for evaluating data is regression. This technique, widely used by industrial engineers, explores linear relationships between predictors and the response. Each observation of the response is a fixed linear combination of the predictors with an added error element. The method is built on the assumption that this error is normally distributed across all observations and has a mean of zero. In some cases, it has been found that the inherent variation is not the result of a random variable, but is instead the result of self-symmetric properties of the observations. For data with these …


Water Quality Prediction Based On Machine Learning Techniques, Zhao Fu Aug 2020

Water Quality Prediction Based On Machine Learning Techniques, Zhao Fu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Water is one of the most important natural resources for all living organisms on earth. The monitoring of treated wastewater discharge quality is vitally important for the stability and protection of the ecosystem. Collecting and analyzing water samples in the laboratory consumes much time and resources. In the last decade, many machine learning techniques, like multivariate linear regression (MLR) and artificial neural network (ANN) model, have been proposed to address the problem. However, simple linear regression analysis cannot accurately forecast water quality because of complicated linear and nonlinear relationships in the water quality dataset. The ANN model also has shortcomings …


Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han Jul 2020

Machine Learning Approaches For Fracture Risk Assessment: A Comparative Analysis Of Genomic And Phenotypic Data In 5130 Older Men, Qing Wu, Fatma Nasoz, Jongyun Jung, Bibek Bhattarai, Mira V. Han

Public Health Faculty Publications

The study aims were to develop fracture prediction models by using machine learning approaches and genomic data, as well as to identify the best modeling approach for fracture prediction. The genomic data of Osteoporotic Fractures in Men, cohort Study (n = 5130), were analyzed. After a comprehensive genotype imputation, genetic risk score (GRS) was calculated from 1103 associated Single Nucleotide Polymorphisms for each participant. Data were normalized and split into a training set (80%) and a validation set (20%) for analysis. Random forest, gradient boosting, neural network, and logistic regression were used to develop prediction models for major osteoporotic fractures …


A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead Jul 2020

A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead

Engineering Faculty Articles and Research

Identification of neighborhoods is an important, financially-driven topic in real estate. It is known that the real estate industry uses ZIP (postal) codes and Census tracts as a source of land demarcation to categorize properties with respect to their price. These demarcated boundaries are static and are inflexible to the shift in the real estate market and fail to represent its dynamics, such as in the case of an up-and-coming residential project. Delineated neighborhoods are also used in socioeconomic and demographic analyses where statistics are computed at a neighborhood level. Current practices of delineating neighborhoods have mostly ignored the information …


Sundown: Model-Driven Per-Panel Solar Anomaly Detection For Residential Arrays, Menghong Feng Jul 2020

Sundown: Model-Driven Per-Panel Solar Anomaly Detection For Residential Arrays, Menghong Feng

Masters Theses

There has been significant growth in both utility-scale and residential-scale solar installa- tions in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential- scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this thesis, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and …


Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson Jul 2020

Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson

FIU Electronic Theses and Dissertations

Structural health monitoring (SHM) comprises multiple methodologies for the detection and characterization of stress, damage, and aberrations in engineering structures and equipment. Although, standard commercial engineering operations may freely adopt new technology into everyday operations, the nuclear industry is slowed down by tight governmental regulations and extremely harsh environments. This work aims to investigate and evaluate different sensor systems for real-time structural health monitoring of piping systems and develop a novel machine learning model to detect anomalies from the sensor data. The novelty of the current work lies in the development of an LSTM-autoencoder neural network to automate anomaly detection …


Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart Jul 2020

Automatic Detection Of Dynamic And Static Activities Of The Older Adults Using A Wearable Sensor And Support Vector Machines, Jian Zhang, Rahul Soangra, Thurmon E. Lockhart

Physical Therapy Faculty Articles and Research

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant …


Gep Automatic Clustering Algorithm With Dynamic Penalty Factors, Chen Yan, Kangshun Li, Yang Lei Jul 2020

Gep Automatic Clustering Algorithm With Dynamic Penalty Factors, Chen Yan, Kangshun Li, Yang Lei

Journal of System Simulation

Abstract: Various problems such as sensitive selection of initial clustering center, easily falling into local optimal solution, and determining numbers of clusters, still exist in the traditional clustering algorithm. A GEP automatic clustering algorithm with dynamic penalty factors was proposed. This algorithm combines penalty factors and GEP clustering algorithm, and doesn't rely on any priori knowledge of the data set. And a dynamic algorithm was proposed to generate the penalty factors according to the distribution characteristics of different data sets, which is a better solution for the impact of isolated points and noise points. According to four dataset, penalty factors' …


A Data-Driven Approach For Winter Precipitation Classification Using Weather Radar And Nwp Data, Bong Chul Seo Jul 2020

A Data-Driven Approach For Winter Precipitation Classification Using Weather Radar And Nwp Data, Bong Chul Seo

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This study describes a framework that provides qualitative weather information on winter precipitation types using a data-driven approach. The framework incorporates the data retrieved from weather radars and the numerical weather prediction (NWP) model to account for relevant precipitation microphysics. To enable multimodel-based ensemble classification, we selected six supervised machine learning models: k-nearest neighbors, logistic regression, support vector machine, decision tree, random forest, and multi-layer perceptron. Our model training and cross-validation results based on Monte Carlo Simulation (MCS) showed that all the models performed better than our baseline method, which applies two thresholds (surface temperature and atmospheric layer thickness) for …


Evaluation Of Temporal Damage Progression In Concrete Structures Affected By Asr Using Data-Driven Methods, Vafa Soltangharaei Jul 2020

Evaluation Of Temporal Damage Progression In Concrete Structures Affected By Asr Using Data-Driven Methods, Vafa Soltangharaei

Theses and Dissertations

Alkali-silica reaction (ASR) is a chemical reaction, which causes damage in concrete structures such as bridges, dams, and nuclear containments and powerplant structures. The ASR-induced damage may endanger the integrity and serviceability of structures. Several methods such as visual inspection, petrographic analysis, demountable mechanical strain gauges, and cracking index have been utilized for study the effect of ASR on structures, which are not always efficient in early damage detection and some are destructive and prohibited in nuclear structures. Nondestructive methods and structural health monitoring techniques can be alternatives for the condition assessment of structures. Among the nondestructive methods, acoustic emission …


A Study Of The Thermodynamics Of Small Systems And Phase Transition In Bulk Square Well-Hard Disk Binary Mixture, Gulce Kalyoncu Jul 2020

A Study Of The Thermodynamics Of Small Systems And Phase Transition In Bulk Square Well-Hard Disk Binary Mixture, Gulce Kalyoncu

Graduate Theses and Dissertations

Under the umbrella of statistical mechanics and particle-based simulations, two distinct problems have been discussed in this study. The first part included systems of finite clusters of three and 13 particles, where the particles are interacting via Lennard Jones potential. A machine learning technique, Diffusion Maps (DMap), has been employed to the large datasets of thermodynamically small systems from Monte Carlo simulations in order to identify the structural and energetic changes in these systems. DMap suggests at most three dimensions are required to describe and identify the systems with 9 (N = 3) and 39 (N = 13) dimensions. At …


Rethinking The Weakness Of Stream Ciphers And Its Application To Encrypted Malware Detection, William T. Stone, Junggab Son Jul 2020

Rethinking The Weakness Of Stream Ciphers And Its Application To Encrypted Malware Detection, William T. Stone, Junggab Son

Master of Science in Computer Science Theses

Encryption key use is a critical component to the security of a stream cipher: because many implementations simply consist of a key scheduling algorithm and logical exclusive or (XOR), an attacker can completely break the cipher by XORing two ciphertexts encrypted under the same key, revealing the original plaintexts and the key itself. The research presented in this paper reinterprets this phenomenon, using repeated-key cryptanalysis for stream cipher identification. It has been found that a stream cipher executed under a fixed key generates patterns in each character of the ciphertexts it produces and that these patterns can be used to …


Theoretical Investigation Of The Biomass Conversion On Transition Metal Surfaces Based On Density Functional Theory Calculations And Machine Learning, Wenqiang Yang Jul 2020

Theoretical Investigation Of The Biomass Conversion On Transition Metal Surfaces Based On Density Functional Theory Calculations And Machine Learning, Wenqiang Yang

Theses and Dissertations

During the past decades, heterogenous catalyzed conversion of biomass to hydrocarbons with similar or identical properties to conventional fossil fuels has gained significantly academic and industrial interest. However, the conventional heterogeneous catalysts such as sulfided NiMo/Al2O3 and CoMo/Al2O3 used have various drawbacks, such as short catalyst lifetime and high sulfur content of product. To overcome the limitations of the conventional sulfided catalysts, new catalysts must be developed, which requires a better understanding of the reaction mechanism of the biomass conversion. Based on density functional theory, in this thesis, we reported a computational calculation study …


Moving Targets: Addressing Concept Drift In Supervised Models For Hacker Communication Detection, Susan Mckeever, Brian Keegan, Andrei Quieroz Jun 2020

Moving Targets: Addressing Concept Drift In Supervised Models For Hacker Communication Detection, Susan Mckeever, Brian Keegan, Andrei Quieroz

Conference papers

Abstract—In this paper, we are investigating the presence of concept drift in machine learning models for detection of hacker communications posted in social media and hacker forums. The supervised models in this experiment are analysed in terms of performance over time by different sources of data (Surface web and Deep web). Additionally, to simulate real-world situations, these models are evaluated using time-stamped messages from our datasets, posted over time on social media platforms. We have found that models applied to hacker forums (deep web) presents an accuracy deterioration in less than a 1-year period, whereas models applied to Twitter (surface …


Data-Driven And Model-Based Methods With Physics-Guided Machine Learning For Damage Identification, Zhiming Zhang Jun 2020

Data-Driven And Model-Based Methods With Physics-Guided Machine Learning For Damage Identification, Zhiming Zhang

LSU Doctoral Dissertations

Structural health monitoring (SHM) has been widely used for structural damage diagnosis and prognosis of a wide range of civil, mechanical, and aerospace structures. SHM methods are generally divided into two categories: (1) model-based methods; (2) data-driven methods. Compared with data-driven SHM, model-based methods provide an updated physics-based numerical model that can be used for damage prognosis when long-term data is available. However, the performance of model-based methods is susceptible to modeling error in establishing the numerical model, which is usually unavoidable due to model simplification and omission. The major challenge of data-driven SHM methods lies in data insufficiency, e.g., …


Exploiting Earth Observation Data To Impute Groundwater Level Measurements With An Extreme Learning Machine, Steven Evans, Gustavious P. Williams, Norman L. Jones, Daniel P. Ames, E. James Nelson Jun 2020

Exploiting Earth Observation Data To Impute Groundwater Level Measurements With An Extreme Learning Machine, Steven Evans, Gustavious P. Williams, Norman L. Jones, Daniel P. Ames, E. James Nelson

Faculty Publications

Groundwater resources are expensive to develop and use; they are difficult to monitor and data collected from monitoring wells are often sporadic, often only available at irregular, infrequent, or brief intervals. Groundwater managers require an accurate understanding of historic groundwater storage trends to effectively manage groundwater resources, however, most if not all well records contain periods of missing data. To understand long-term trends, these missing data need to be imputed before trend analysis. We present a method to impute missing data at single wells, by exploiting data generated from Earth observations that are available globally. We use two soil moisture …


A Convolutional Neural Network For Fast Fluence Estimation In Complex Tissues, Nicholas Blasey, Geoffrey P. Luke Jun 2020

A Convolutional Neural Network For Fast Fluence Estimation In Complex Tissues, Nicholas Blasey, Geoffrey P. Luke

ENGS 88 Honors Thesis (AB Students)

Photoacoustic (PA) imaging is a non-invasive diagnostic imaging technique that gives images of photoabsorbers based on their absorption of optical energy. These optical absorption properties can then be linked to important tissue properties. For the method to be quantitative, however, it is necessary to have an accurate estimation of the light fluence in the tissue. The current gold standard in addressing the fluence estimation problem, a Monte Carlo Simulation, is costly in time and computation. In this work, we developed a deep neural network to quickly and accurately estimate light fluence in arbitrary tissue types and geometries. The network was …


Optimized 3d Reconstruction For Infrastructure Inspection With Automated Structure From Motion And Machine Learning Methods, Samuel Arce Munoz Jun 2020

Optimized 3d Reconstruction For Infrastructure Inspection With Automated Structure From Motion And Machine Learning Methods, Samuel Arce Munoz

Theses and Dissertations

Infrastructure monitoring is being transformed by the advancements on remote sensing, unmanned vehicles and information technology. The wide interaction among these fields and the availability of reliable commercial technology are helping pioneer intelligent inspection methods based on digital 3D models. Commercially available Unmanned Aerial Vehicles (UAVs) have been used to create 3D photogrammetric models of industrial equipment. However, the level of automation of these missions remains low. Limited flight time, wireless transfer of large files and the lack of algorithms to guide a UAV through unknown environments are some of the factors that constraint fully automated UAV inspections. This work …


Conference Roundup: Smart Cataloging - Beginning The Move From Batch Processing To Automated Classification, Rachel S. Evans Jun 2020

Conference Roundup: Smart Cataloging - Beginning The Move From Batch Processing To Automated Classification, Rachel S. Evans

Articles, Chapters and Online Publications

This article reviewed the Amigos Online Conference titled “Work Smarter, Not Harder: Innovating Technical Services Workflows” keynote session delivered by Dr. Terry Reese on February 13, 2020. Excerpt:

"As the developer of MarcEdit, a popular metadata suite used widely across the library community, Reese’s current work is focused on the ways in which libraries might leverage semantic web techniques in order to transform legacy library metadata into something new. So many sessions related to using new technologies in libraries or academia, although exciting, are not practical enough to put into everyday use by most librarians. Reese’s keynote, titled Smart Cataloging: …


Quantitative Prediction Of Fractures In Shale Using The Lithology Combination Index, Zhengchen Zhang, Pingping Li, Yujie Yuan, Kouqi Liu, Jingyu Hao, Huayao Zou Jun 2020

Quantitative Prediction Of Fractures In Shale Using The Lithology Combination Index, Zhengchen Zhang, Pingping Li, Yujie Yuan, Kouqi Liu, Jingyu Hao, Huayao Zou

Research outputs 2014 to 2021

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Fractures, which are related to tectonic activity and lithology, have a significant impact on the storage and production of oil and gas in shales. To analyze the impact of lithological factors on fracture development in shales, we selected the shale formation from the Da’anzhai member of the lower Jurassic shales in a weak tectonic deformation zone in the Sichuan Basin. We defined a lithology combination index (LCI), that is, an attribute quantity value of some length artificially defined by exploring the lithology combination. LCI contains information on shale content at a …


Advancing Ecohydrology In The 21st Century: A Convergence Of Opportunities, Andrew J. Guswa, Doerthe Tetzlaff, John S. Selker, Darryl E. Carlyle-Moses, Elizabeth W. Boyer, Michael Bruen, Carles Cayuela, Irena F. Creed, Nick Van De Giesen, Domenico Grasso, David M. Hannah, Janice E. Hudson, Sean A. Hudson, Shin'ichi Iida, Robert B. Jackson, Gabriel G. Katul, Tomo'omi Kumagai, Pilar Llorens, Flavio Lopes Ribeiro, Beate Michalzik, Kazuki Nanko, Christopher Oster, Diane E. Pataki, Catherine A. Peters, Andrea Rinaldo, Daniel Sanchez Carretero, Branimir Trifunovic, Maciej Zalewski, Marja Haagsma, Delphis F. Levia Jun 2020

Advancing Ecohydrology In The 21st Century: A Convergence Of Opportunities, Andrew J. Guswa, Doerthe Tetzlaff, John S. Selker, Darryl E. Carlyle-Moses, Elizabeth W. Boyer, Michael Bruen, Carles Cayuela, Irena F. Creed, Nick Van De Giesen, Domenico Grasso, David M. Hannah, Janice E. Hudson, Sean A. Hudson, Shin'ichi Iida, Robert B. Jackson, Gabriel G. Katul, Tomo'omi Kumagai, Pilar Llorens, Flavio Lopes Ribeiro, Beate Michalzik, Kazuki Nanko, Christopher Oster, Diane E. Pataki, Catherine A. Peters, Andrea Rinaldo, Daniel Sanchez Carretero, Branimir Trifunovic, Maciej Zalewski, Marja Haagsma, Delphis F. Levia

Engineering: Faculty Publications

Nature-based solutions for water-resource challenges require advances in the science of ecohydrology. Current understanding is limited by a shortage of observations and theories that can further our capability to synthesize complex processes across scales ranging from submillimetres to tens of kilometres. Recent developments in environmental sensing, data, and modelling have the potential to drive rapid improvements in ecohydrological understanding. After briefly reviewing advances in sensor technologies, this paper highlights how improved measurements and modelling can be applied to enhance understanding of the following ecohydrological examples: interception and canopy processes, root uptake and critical zone processes, and up-scaled effects of land …


An Iot Framework For Modeling And Controlling Thermal Comfort In Buildings, Fadi Alsaleem, Mehari K. Tesfay, Mostafa Rafaie, Kevin Sinkar, Dhaman Besarla, Parthiban Arunasalam Jun 2020

An Iot Framework For Modeling And Controlling Thermal Comfort In Buildings, Fadi Alsaleem, Mehari K. Tesfay, Mostafa Rafaie, Kevin Sinkar, Dhaman Besarla, Parthiban Arunasalam

Durham School of Architectural Engineering and Construction: Faculty Publications

Humans spend more than 90% of their day in buildings, where their health and productivity are demonstrably linked to thermal comfort. Building thermal comfort systems account for the largest share of U.S energy consumption. Despite this high-energy cost, due to building design complexity and the variety of building occupant needs, addressing thermal comfort in buildings remains a difficult problem. To overcome this challenge, this paper presents an Internet of Things (IoT) approach to efficiently model and control comfort in buildings. In the model phase, a method to access and exploit wearable device data to build a personal thermal comfort model …


Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson Jun 2020

Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson

Honors Theses

The purpose of this project was to implement a human facial emotion recognition system in a real-time, mobile setting. There are many aspects of daily life that can be improved with a system like this, like security, technology and safety.

There were three main design requirements for this project. The first was to get an accuracy rate of 70%, which must remain consistent for people with various distinguishing facial features. The second goal was to have one execution of the system take no longer than half of a second to keep it as close to real time as possible. Lastly, …


Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu May 2020

Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu

Dissertations

The human brain, with its massive computational capability and power efficiency in small form factor, continues to inspire the ultimate goal of building machines that can perform tasks without being explicitly programmed. In an effort to mimic the natural information processing paradigms observed in the brain, several neural network generations have been proposed over the years. Among the neural networks inspired by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use memoryless neuron models and have shown unprecedented success surpassing humans in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks (SNNs) closely mimic biological neurons by operating …


Neurobiological Markers For Remission And Persistence Of Childhood Attention-Deficit/Hyperactivity Disorder, Yuyang Luo May 2020

Neurobiological Markers For Remission And Persistence Of Childhood Attention-Deficit/Hyperactivity Disorder, Yuyang Luo

Dissertations

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in children. Symptoms of childhood ADHD persist into adulthood in around 65% of patients, which elevates the risk for a number of adverse outcomes, resulting in substantial individual and societal burden. A neurodevelopmental double dissociation model is proposed based on existing studies in which the early onset of childhood ADHD is suggested to associate with dysfunctional subcortical structures that remain static throughout the lifetime; while diminution of symptoms over development could link to optimal development of prefrontal cortex. Current existing studies only assess basic measures including regional brain activation …


Deep Learning For Quantitative Motion Tracking Based On Optical Coherence Tomography, Peter Abdelmalak May 2020

Deep Learning For Quantitative Motion Tracking Based On Optical Coherence Tomography, Peter Abdelmalak

Theses

Optical coherence tomography (OCT) is a cross-sectional imaging modality based on low coherence light interferometry. OCT has been widely used in diagnostic ophthalmology and has found applications in other biomedical fields such as cancer detection and surgical guidance.

In the Laboratory of Biophotonics Imaging and Sensing at New Jersey Institute of Technology, we developed a unique needle OCT imager based on a single fiber probe for breast cancer imaging. The needle OCT imager with sub-millimeter diameter can be inserted into tissue for minimally invasive in situ breast imaging. OCT imaging provides spatial resolution similar to histology and has the potential …