Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Bioresource and Agricultural Engineering

Biological Systems Engineering: Papers and Publications

Fed batch

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Optimization Of Process Parameters And Fermentation Strategy For Xylanase Production In A Stirred Tank Reactor Using A Mutant Aspergillus Nidulans Strain, Asmaa Abdella, Fernando Segato, Mark R. Wilkins Jan 2019

Optimization Of Process Parameters And Fermentation Strategy For Xylanase Production In A Stirred Tank Reactor Using A Mutant Aspergillus Nidulans Strain, Asmaa Abdella, Fernando Segato, Mark R. Wilkins

Biological Systems Engineering: Papers and Publications

The present work studied the optimization of aeration rate, agitation rate and oxygen transfer and the use of various batch fermentation strategies for xylanase production from a recombinant Aspergillus nidulans strain in a 3 L stirred tank reactor. Maximum xylanase production of 1250 U/mL with productivity of 313 U/mL/day was obtained under an aeration rate of 2 vvm and an agitation rate of 400 rpm using batch fermentation. The optimum volumetric oxygen transfer coefficient (kLa) for efficient xylanase production was found to be 38.6 h1. Fed batch mode and repeated batch fermentation was also performed with kLa was 38.6 h1. …


Optimization Of Process Parameters And Fermentation Strategy For Xylanase Production In A Stirred Tank Reactor Using A Mutant Aspergillus Nidulans Strain, Asmaa Abdella, Fernando Segato, Mark R. Wilkins Jan 2019

Optimization Of Process Parameters And Fermentation Strategy For Xylanase Production In A Stirred Tank Reactor Using A Mutant Aspergillus Nidulans Strain, Asmaa Abdella, Fernando Segato, Mark R. Wilkins

Biological Systems Engineering: Papers and Publications

The present work studied the optimization of aeration rate, agitation rate and oxygen transfer and the use of various batch fermentation strategies for xylanase production from a recombinant Aspergillus nidulans strain in a 3 L stirred tank reactor. Maximum xylanase production of 1250 U/mL with productivity of 313 U/mL/day was obtained under an aeration rate of 2 vvm and an agitation rate of 400 rpm using batch fermentation. The optimum volumetric oxygen transfer coefficient (kLa) for efficient xylanase production was found to be 38.6 h-1. Fed batch mode and repeated batch fermentation was also performed with kLa was 38.6 h …