Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

University of South Carolina

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 144

Full-Text Articles in Engineering

Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, With Applications To Uncertainty Quantification And Predictive Modeling, Dan Gabriel Cacuci Nov 2019

Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, With Applications To Uncertainty Quantification And Predictive Modeling, Dan Gabriel Cacuci

Faculty Publications

This work presents the Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for response-coupled forward and adjoint linear systems. The 3rd-ASAM enables the efficient computation of the exact expressions of the 3rd-order functional derivatives ("sensitivities") of a general system response, which depends on both the forward and adjoint state functions, with respect to all of the parameters underlying the respective forward and adjoint systems. Such responses are often encountered when representing mathematically detector responses and reaction rates in reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest to overcome the "curse of dimensionality" in sensitivity analysis, uncertainty quantification and predictive ...


Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, Uncertainty Quantification And Predictive Modeling With Applications To Nuclear Energy Systems, Dan Gabriel Cacuci Nov 2019

Towards Overcoming The Curse Of Dimensionality: The Third-Order Adjoint Method For Sensitivity Analysis Of Response-Coupled Linear Forward/Adjoint Systems, Uncertainty Quantification And Predictive Modeling With Applications To Nuclear Energy Systems, Dan Gabriel Cacuci

Faculty Publications

This work presents the Third-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for response-coupled forward and adjoint linear systems. The 3rd-ASAM enables the efficient computation of the exact expressions of the 3rd-order functional derivatives (“sensitivities”) of a general system response, which depends on both the forward and adjoint state functions, with respect to all of the parameters underlying the respective forward and adjoint systems. Such responses are often encountered when representing mathematically detector responses and reaction rates in reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest to overcome the “curse of dimensionality” in sensitivity analysis, uncertainty quantification and predictive ...


Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: I. Effects Of Imprecisely Known Microscopic Total And Capture Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang, Jeffrey A. Favorite Nov 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: I. Effects Of Imprecisely Known Microscopic Total And Capture Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang, Jeffrey A. Favorite

Faculty Publications

The subcritical polyethylene-reflected plutonium (PERP) metal fundamental physics benchmark, which is included in the Nuclear Energy Agency (NEA) International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, has been selected to serve as a paradigm illustrative reactor physics system for the application of the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) that was developed by Cacuci. The 2nd-ASAM enables the exhaustive deterministic computation of the exact values of the 1st-order and 2nd-order sensitivities of a system response to the parameters underlying the respective system. The PERP benchmark is numerically modeled in this work by using the deterministic multigroup neutron transport equation discretized ...


Gasification Of Pelletized Corn Residues With Oxygen Enriched Air And Steam, Poramate Sittisun, Nakorn Tippayawong, Sirivatch Shimpalee Oct 2019

Gasification Of Pelletized Corn Residues With Oxygen Enriched Air And Steam, Poramate Sittisun, Nakorn Tippayawong, Sirivatch Shimpalee

Faculty Publications

This work studied generation of producer gas using oxygen-enriched air and steam mixture as gasifying medium. Corn residues consisting of cobs and stover were used as biomass feedstock. Both corn residues were pelletized and gasified separately with normal air, oxygen enriched air and steam mixture in a fixed bed reactor. Effects of oxygen concentration in enriched air (21-50%), equivalence ratio (0.15-0.35), and steam to biomass ratio (0-0.8) on the yield of product gas, the combustible gas composition such as H2, CO, and CH4, the lower heating value (LHV), and the gasification efficiency were investigated. It was found ...


Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Ii. Effects Of Imprecisely Known Microscopic Scattering Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang Oct 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Ii. Effects Of Imprecisely Known Microscopic Scattering Cross Sections, Daniel Gabriel Cacuci, Ruixian Fang

Faculty Publications

This work continues the presentation commenced in Part I of the second-order sensitivity analysis of nuclear data of a polyethylene-reflected plutonium (PERP) benchmark using the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM). This work reports the results of the computations of the first- and second-order sensitivities of this benchmark's computed leakage response with respect to the benchmark's 21,600 parameters underlying the computed group-averaged isotopic scattering cross sections. The numerical results obtained for the 21,600 first-order relative sensitivities indicate that the majority of these were small, the largest having relative values of O (10(-2)). Furthermore, the vast ...


Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Iii. Effects Of Imprecisely Known Microscopic Fission Cross Sections And Average Number Of Neutrons Per Fission, Dan Gaberiel Cacuci, Ruixian Fang, J. A. Favorite, M. C. Badea, F. Di Rocco Oct 2019

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-Asam) Applied To A Subcritical Experimental Reactor Physics Benchmark: Iii. Effects Of Imprecisely Known Microscopic Fission Cross Sections And Average Number Of Neutrons Per Fission, Dan Gaberiel Cacuci, Ruixian Fang, J. A. Favorite, M. C. Badea, F. Di Rocco

Faculty Publications

The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) is applied to compute the first-order and second-order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental system with respect to the following nuclear data: Group-averaged isotopic microscopic fission cross sections, mixed fission/total, fission/scattering cross sections, average number of neutrons per fission (), mixed /total cross sections, /scattering cross sections, and /fission cross sections. The numerical results obtained indicate that the 1st-order relative sensitivities for these nuclear data are smaller than the 1st-order sensitivities of the PERP leakage response with respect to the total cross sections but are larger than ...


First Principles Investigation Of Anomalous Pressure-Dependent Thermal Conductivity Of Chalcopyrites, Loay Flalfy, Denis Music, Ming Hu Oct 2019

First Principles Investigation Of Anomalous Pressure-Dependent Thermal Conductivity Of Chalcopyrites, Loay Flalfy, Denis Music, Ming Hu

Faculty Publications

The effect of compression on the thermal conductivity of CuGaS2, CuInS2, CuInTe2, and AgInTe2 chalcopyrites (space group I-42d) was studied at 300 K using phonon Boltzmann transport equation (BTE) calculations. The thermal conductivity was evaluated by solving the BTE with harmonic and third-order interatomic force constants. The thermal conductivity of CuGaS2 increases with pressure, which is a common behavior. Striking differences occur for the other three compounds. CuInTe2 and AgInTe2 exhibit a drop in the thermal conductivity upon increasing pressure, which is anomalous. AgInTe2 reaches a very low thermal conductivity of 0.2 W·m−1 ·K −1 at 2 ...


Upcycling Single-Use Polyethylene Into High-Quality Liquid Products, Gokhan Celik, Robert M. Kennedy, Ryan A. Hackler, Magali Ferrandon, Akalanka Tennakoon, Smita Patnaik, Anne M. Lapointe, Salai Ammal, Andreas Heyden, Frédéric A. Perras, Marek Pruski, Susannah L. Scott, Kenneth R. Poeppelmeier, Aaron D. Sadow, Massimiliano Delferro Oct 2019

Upcycling Single-Use Polyethylene Into High-Quality Liquid Products, Gokhan Celik, Robert M. Kennedy, Ryan A. Hackler, Magali Ferrandon, Akalanka Tennakoon, Smita Patnaik, Anne M. Lapointe, Salai Ammal, Andreas Heyden, Frédéric A. Perras, Marek Pruski, Susannah L. Scott, Kenneth R. Poeppelmeier, Aaron D. Sadow, Massimiliano Delferro

Faculty Publications

Our civilization relies on synthetic polymers for all aspects of modern life; yet, inefficient recycling and extremely slow environmental degradation of plastics are causing increasing concern about their widespread use. After a single use, many of these materials are currently treated as waste, underutilizing their inherent chemical and energy value. In this study, energy-rich polyethylene (PE) macromolecules are catalytically transformed into value-added products by hydrogenolysis using well-dispersed Pt nanoparticles (NPs) supported on SrTiO3 perovskite nanocuboids by atomic layer deposition. Pt/SrTiO3 completely converts PE (Mn = 8000− 158,000 Da) or a single-use plastic bag (Mn = 31,000 Da) into high-quality ...


Ligaos Is A Fast Li-Ion Conductor: A First-Principles Prediction, Xueling Lei, Wenjun Wu, Bo Xu, Chuying Ouyang, Kevin Huang Oct 2019

Ligaos Is A Fast Li-Ion Conductor: A First-Principles Prediction, Xueling Lei, Wenjun Wu, Bo Xu, Chuying Ouyang, Kevin Huang

Faculty Publications

Solid Li-ion conducting electrolytes are highly sought for all solid-state Li-batteries, which are considered the next-generation safe batteries. Here a systematic computational study on the intrinsic transport properties of lithium gallium oxysulfide, LiGaOS (S. G. Pmc21), as a potential solid-state Li-ion electrolyte have been reported. The phonon dispersion spectrum analysis indicates that LiGaOS crystal structure is dynamically stable. The energy band structure and density of states calculations suggest that LiGaOS is an insulator with a wide indirect band gap of ∼5.44 eV. The CI-NEB calculations reveal that the “kick-off” collective migration via Li-interstitials is the dominant conduction mechanism ...


Stacked Modelling Framework, Kareem Abdelfatah Oct 2019

Stacked Modelling Framework, Kareem Abdelfatah

Theses and Dissertations

The thesis develops a predictive modeling framework based on stacked Gaussian processes and applies it to two main applications in environmental and chemical en- gineering. First, a network of independently trained Gaussian processes (StackedGP) is introduced to obtain analytical predictions of quantities of interest (model out- puts) with quantified uncertainties. StackedGP framework supports component- based modeling in different fields such as environmental and chemical science, en- hances predictions of quantities of interest through a cascade of intermediate predic- tions usually addressed by cokriging, and propagates uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first and ...


Molecular Modeling Of Tethered Polyelectrolytes For Novel Biomedical Applications, Merina Jahan Oct 2019

Molecular Modeling Of Tethered Polyelectrolytes For Novel Biomedical Applications, Merina Jahan

Theses and Dissertations

Current research trends throughout the world focus on designing intelligent materi- als and systems for diverse applications in all courses of life. Biomaterials research encompasses a major part in this revolution due to the increased effort in fulfilling unmet medical needs to treat complex physiological and neurodegenerative disorders. Polymers play inevitable roles in these research endeavors for their ubiquitous pres- ence in biological systems. Therefore, it is crucial to understand how the polymeric molecules interact within diverse biological environments, to efficiently engineer them for various drug delivery and biosensing systems. The use of experimental design and selection of different polymers ...


Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling Oct 2019

Bison Simulation-Based Identification Of Important Design Criteria For U3si2 Fuels With Composite-Monolithic Duplex Sic Cladding, Jacob A. Yingling

Theses and Dissertations

Accident Tolerant Fuels (ATF) require a combination of fuel and cladding which have comparable longevity characteristics to UO2 while improving resistance to radiological release during and after accidents. U3Si2 has been proposed for use in ATF concepts for its high uranium density and high thermal conductivity which provide improved fuel performance. However, some of U3Si2’s material properties are not well understood. One such property, thermal creep of U3Si2, is an important contributing factor to U3Si2’s viability as an ATF. No experimentally derived thermal creep model is published for U3Si2, and previous analyses of compressive thermal creep experimental data ...


Computational Wave Field Modeling In Anisotropic Media, Sajan Shrestha Oct 2019

Computational Wave Field Modeling In Anisotropic Media, Sajan Shrestha

Theses and Dissertations

In this thesis, a meshless semi-analytical computational method is presented to compute the ultrasonic wave field in generalized anisotropic material while understanding the physics of wave propagation in detail. To understand the wave-damage interaction in an anisotropic material, it is neither feasible nor cost-effective to perform multiple experiments in the laboratory. Hence, recently the computational nondestructive evaluation (CNDE) received much attention to performing the NDE experiments in a virtual environment. In this thesis, a fundamental framework is constructed to perform the CNDE experiment of a thick composite specimen in a Pulse-Echo (PE) and through-transmission mode. To achieve the target, the ...


Discovery Of Materials Through Applied Machine Learning, Travis Williams Oct 2019

Discovery Of Materials Through Applied Machine Learning, Travis Williams

Theses and Dissertations

Advances in artificial intelligence technology, specifically machine learning, have cre- ated opportunities in the material sciences to accelerate material discovery and gain fundamental understanding of the interaction between certain the constituent ele- ments of a material and the properties expressed by that material. Application of machine learning to experimental materials discovery is slow due to the monetary and temporal cost of experimental data, but parallel techniques such as continuous com- positional gradients or high-throughput characterization setups are capable of gener- ating larger amounts of data than the typical experimental process, and therefore are suitable for combination with machine learning. A ...


Study Of Wire Arc Additive Manufacturing With Aluminum Alloy 2219, Sritam Kumar Dash Oct 2019

Study Of Wire Arc Additive Manufacturing With Aluminum Alloy 2219, Sritam Kumar Dash

Theses and Dissertations

This thesis discusses WAAM (wire arc additive manufacturing) technology using TIG (Tungsten Inert Gas) welding method with aluminum 2219 as the substrate and aluminum 2319 as the filler material. The most important characteristic of this method of manufacturing is very little wastage of material as it does not follow the conventional method of manufacturing where material is removed from a bigger block to finally achieve the desired shape. This method uses a layer by layer approach to build the part. Generally, in additive manufacturing, the production time may vary depending on the type of method used. The material deposition rate ...


Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng Oct 2019

Quantifying And Elucidating The Effect Of Co2 On The Thermodynamics, Kinetics And Charge Transport Of Aemfcs, Yiwei Zheng

Theses and Dissertations

Anion exchange membrane fuel cells (AEMFCs) have shown significant promise to provide clean, sustainable energy for grid and transportation applications – and at a lower theoretical cost than more established proton exchange membrane fuel cells (PEMFCs). Adding to the excitement around AEMFCs is the extremely high peak power that can now be obtained (> 3 W cm-2) and continuously improving durability (1000+ h), which has made the future deployment of AEMFCs in real-world applications a serious consideration. For some applications (e.g. automotive), the most critical remaining practical issue with AEMFCs is understanding and mitigating the effects of atmospheric CO2 (in the ...


Enhanced Heat Transfer In Spray Cooling Through Surface Modifications: An Experimental And Computational Study, Azzam Saadi Salman Oct 2019

Enhanced Heat Transfer In Spray Cooling Through Surface Modifications: An Experimental And Computational Study, Azzam Saadi Salman

Theses and Dissertations

Today, dissipating high heat flux safely is one of the greatest challenges for thermal engineers in thermal management systems, and it becomes a critical barrier to technological developments for many engineering applications. Due to technological advances and aggressive micro-miniaturization of electronic components, the surface area of most devices has shrunk while the computational power increased exponentially. Therefore, the amount of heat dissipated from surfaces has increased significantly. Numerous cooling techniques have been introduced to replace the traditional air cooling systems and to maintain the efficiency and reliability of electronic components. Microelectronics work efficiently and safely at surface temperatures of < 100 ℃ and 125 ℃ for general and defense applications, respectively. One of the proposed alternative schemes is spray cooling, which is considered one of the most advanced cooling methods. It is used for high and ultra-high heat flux dissipation, as it can dissipate 150-200 W/cm2 while maintaining the surface temperature within this range. Also, spray cooling removes a large amount of energy at a lower liquid flow rate compared to other cooling techniques, such as jet impingement and microchannel heat sink. The thermal performance of spray cooling systems can be enhanced either actively or passively. Active enhancement is a very efficient technique; however, it adds more pumping power. The present work focuses on three main objectives: evaluating and analyzing spray cooling performance, developing a three-dimensional numerical multi-phase model for heat transfer process in spray cooling and enhancing the thermal performance of spray cooling passively.

First ...


A Non-Contacting System For Rail Neutral Temperature And Stress Measurements, Katelyn Knopf Oct 2019

A Non-Contacting System For Rail Neutral Temperature And Stress Measurements, Katelyn Knopf

Theses and Dissertations

Continuous Welded Rail (CWR) has become the standard in modern railway track construction around the world because it alleviates well-documented disadvantages of rail joints in a track. CWR practice results in long segments of continuous rail in the track that will develop significant thermal elongation. To avoid the use of impractical large thermal expansion joints and limit the expected thermal elongation, the rail is anchored to the ties. Consequently, the rail is exposed to higher thermal stress demands as the rail temperature varies. At the time a CWR is laid, the rail is free of thermal stresses; the temperature at ...


Evaluating Measurement Of Strain Hardening Method For Mechanical Assessment Of Geomembrane Service Life In Msw Landfills, Alaa Alsharaballi Oct 2019

Evaluating Measurement Of Strain Hardening Method For Mechanical Assessment Of Geomembrane Service Life In Msw Landfills, Alaa Alsharaballi

Theses and Dissertations

The increased household production result in more construction of municipal solid waste (MSW) landfills and lagoons. One major part of these engineering projects is high-density polyethylene (HDPE) geomembrane. Geomembrane is an impermeable layer that used along bottom and sides of landfills and lagoons to contain the leachate and to protect the groundwater. Although of their chemicals resistance and high strength, it can be aged under service conditions such as high temperature, ultraviolet (UV) light, and chemicals exposure. These conditions accelerate oxidation of geomembrane and lead to brittle behavior and stress cracking which reduce its service life.

Our objective in this ...


Development Of A National-Scale Big Data Analytics Pipeline To Study The Potential Impacts Of Flooding On Critical Infrastructures And Communities, Nattapon Donratanapat Oct 2019

Development Of A National-Scale Big Data Analytics Pipeline To Study The Potential Impacts Of Flooding On Critical Infrastructures And Communities, Nattapon Donratanapat

Theses and Dissertations

With the rapid development of the Internet of Things (IoT) and Big data infrastructure, crowdsourcing techniques have emerged to facilitate data processing and problem solving particularly for flood emergences purposes. A Flood Analytics Information System (FAIS) has been developed as a Python Web application to gather Big data from multiple servers and analyze flooding impacts during historical and real-time events. The application is smartly designed to integrate crowd intelligence, machine learning (ML), and natural language processing of tweets to provide flood warning with the aim to improve situational awareness for flood risk management and decision making. FAIS allows the user ...


Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich Oct 2019

Modeling The Uranium-Silicon Phase Equilibria Based On Computational And Experimental Analysis, Tashiema Lixona Ulrich

Theses and Dissertations

As part of Accident tolerant fuel initiative, the uranium-silicide compound, U3Si2, is under consideration as a potential replacement for conventional uranium dioxide fuel. It is of interest as its higher uranium density of 11.3 g(U)/cm3 compared to 9.7 g(U)/cm3 for UO2 may allow use of more robust, but less neutronically economical fuel cladding. The improved uranium content would not only accommodate the neutronic penalty inherent to certain accident tolerant cladding concepts but also facilitate improved reactor performance with the potential for longer fuel cycles.

The U-Si system has been the subject of various studies ...


Properties, Learning Algorithms, And Applications Of Chain Graphs And Bayesian Hypergraphs, Mohammad Ali Javidian Oct 2019

Properties, Learning Algorithms, And Applications Of Chain Graphs And Bayesian Hypergraphs, Mohammad Ali Javidian

Theses and Dissertations

Probabilistic graphical models (PGMs) use graphs, either undirected, directed, or mixed, to represent possible dependencies among the variables of a multivariate probability distri- bution. PGMs, such as Bayesian networks and Markov networks, are now widely accepted as a powerful and mature framework for reasoning and decision making under uncertainty in knowledge-based systems. With the increase of their popularity, the range of graphical models being investigated and used has also expanded. Several types of graphs with dif- ferent conditional independence interpretations - also known as Markov properties - have been proposed and used in graphical models.

The graphical structure of a Bayesian network ...


A Novel And Inexpensive Solution To Build Autonomous Surface Vehicles Capable Of Negotiating Highly Disturbed Environments, Jason Moulton Oct 2019

A Novel And Inexpensive Solution To Build Autonomous Surface Vehicles Capable Of Negotiating Highly Disturbed Environments, Jason Moulton

Theses and Dissertations

This dissertation has four main contributions. The first contribution is the design and build of a fleet of long-range, medium-duration deployable autonomous surface vehicles (ASV). The second is the development, implementation, and testing of inex-pensive sensors to accurately measure wind, current, and depth environmental vari- ables. The third leverages the first two contributions, and is modeling the effects of environmental variables on an ASV, finally leading to the development of a dynamic controller enabling deployment in more uncertain conditions.

The motivation for designing and building a new ASV comes from the lack of availability of a flexible and modular platform ...


Using A Nondispersive Wave Propagation For Measuring Dynamic Fracture Initiation Toughness Of Materials: Experimental And Numerical Based Study, Ali Fahad Fahem Oct 2019

Using A Nondispersive Wave Propagation For Measuring Dynamic Fracture Initiation Toughness Of Materials: Experimental And Numerical Based Study, Ali Fahad Fahem

Theses and Dissertations

Fracture mechanics has been a subject of great interest in the engineering community for decades. During this period, fracture parameters such as Stress Intensity Factor (SIF), J-integral, and Crack-Tip Opening Displacement (CTOD) have been developed and used to characterize the fracture properties of most engineering materials under quasi-static loading condition. Usually, these properties are obtained experimentally by using standard methods such as ASTM E399, E1820 or E1920 to evaluate the stress intensity factor 𝐾𝐼𝑐 𝑠𝑡𝑎𝑡𝑖𝑐, elastic-plastic toughness 𝐽𝐼𝑐 𝑠𝑡𝑎𝑡𝑖𝑐 and crack tip opening displacement (CTOD) respectively. Conversely, most critical engineering applications are subjected to a sudden or high strain rate ...


Challenges In Large-Scale Machine Learning Systems: Security And Correctness, Emad Alsuwat Oct 2019

Challenges In Large-Scale Machine Learning Systems: Security And Correctness, Emad Alsuwat

Theses and Dissertations

In this research, we address the impact of data integrity on machine learning algorithms. We study how an adversary could corrupt Bayesian network structure learning algorithms by inserting contaminated data items. We investigate the resilience of two commonly used Bayesian network structure learning algorithms, namely the PC and LCD algorithms, against data poisoning attacks that aim to corrupt the learned Bayesian network model.

Data poisoning attacks are one of the most important emerging security threats against machine learning systems. These attacks aim to corrupt machine learning models by con- taminating datasets in the training phase. The lack of resilience of ...


Adipose Tissue Engineering: A Therapeutic Strategy For The Treatment Of Obesity And Glucose Intolerance, Michael A. Hendley Oct 2019

Adipose Tissue Engineering: A Therapeutic Strategy For The Treatment Of Obesity And Glucose Intolerance, Michael A. Hendley

Theses and Dissertations

Despite available treatment options, the number of people afflicted by type 2 diabetes has steadily risen for decades. Nearly 90% of the diabetic population also suffers from obesity and the link between the two diseases is undeniable. Characterized by rapid expansion of the adipose tissue and improper lipid storage, the mishandling of lipids by adipose tissue promotes the diabetic state. Excess lipids, unable to be properly stored, build up in peripheral tissues promoting insulin resistance and type 2 diabetes. Therapeutic strategies designed to address adipose tissue lipid handling could represent a promising treatment strategy for obesity associated type 2 diabetes ...


Wireless Rf Induced Energy Absorption And Heating Of Lanthanum-Nickel Alloy In The Near-Field, Michael Dillon Lindsay Oct 2019

Wireless Rf Induced Energy Absorption And Heating Of Lanthanum-Nickel Alloy In The Near-Field, Michael Dillon Lindsay

Theses and Dissertations

This thesis will investigate whether and how a synthetic metal-magnetic alloy absorbs enough near-field electromagnetic (EM) radiation for heating. Although resistive elements could be used for indirect heating, a wireless radio frequency (RF) method is explored because of its advantages in its non-intrusive nature and its ability to direct or focus energy within a specific area. For our case, the RF heating process relies on the materials ability to absorb sufficient RF energy due to the induced currents. We expect there to be significant surface resistance due to the conductivity and magnetic permeability of the material and thus heat. This ...


Experimental Investigations Of Levee Breach Flows, Ibrahim Adil Ibrahim Oct 2019

Experimental Investigations Of Levee Breach Flows, Ibrahim Adil Ibrahim

Theses and Dissertations

Two individual but related problems involving levee breach flow are studied. The first one involves experimental and dynamic modeling of steady flow through a levee breach, and the second one involves experimental investigation of flood management by an engineered levee breach. Both studies are conducted in the Hydraulics Laboratory, the University of South Carolina.

In the first problem, an idealized levee breach on a trapezoidal embankment was studied. Flow data including water depths, surface velocities, and flow discharges were collected from 28 experiments considering different cases of breach width and downstream water depth. Ultrasonic sensors were used to record the ...


Tissue-Specific Roles Of Transforming Growth Factor Beta Ligands In Cardiac Outflow Tract Malformations And Calcific Aortic Valve Disease, Nadia Al-Sammarraie Oct 2019

Tissue-Specific Roles Of Transforming Growth Factor Beta Ligands In Cardiac Outflow Tract Malformations And Calcific Aortic Valve Disease, Nadia Al-Sammarraie

Theses and Dissertations

Congenital heart defects and adult calcific aortic valve disease are two of the leading causes of morbidity and mortality worldwide. To date, there is no medical cure and surgical intervention is the main option of treatment. The cardiac outflow tract is the major site for these abnormalities, which are triggered by genetic and/or environmental factors that alter development and/or homeostasis. Recently, significant roles of TGFβ signaling in development of cardiovascular disorders have become more evident in humans, however, the specific requirement of individual TGFβ ligands on the pathogenesis of OFT malformations and diseases remains elusive. In the present ...


Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam Oct 2019

Modeling Neutron Interaction Inside A 2d Reactor Using Monte Carlo Method, A. S. M. Fakhrul Islam

Theses and Dissertations

Scientists and engineers have been working for many years to develop accurate approaches to analyzing nuclear power reactors using computer codes that closely model the behavior of neutrons in a reactor core. The Monte Carlo simulation method is capable of treating complex geometries with a high level of resolution and fidelity to model neutron interactions inside a reactor core. With the requirement of accurate modeling in reactor physics and dynamics and great innovation of computer technology, Monte Carlo method is becoming an ever more powerful tool and receiving rising attention. In this study, Monte Carlo method is used to model ...