Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

PDF

Series

Aerospace Engineering

Institution
Keyword
Publication

Articles 1 - 30 of 75

Full-Text Articles in Engineering

Bubble Pinch-Off In Turbulence, Daniel J. Ruth, Wouter Mostert, Stephane Perrard, Luc Deike Dec 2019

Bubble Pinch-Off In Turbulence, Daniel J. Ruth, Wouter Mostert, Stephane Perrard, Luc Deike

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Although bubble pinch-off is an archetype of a dynamical system evolving toward a singularity, it has always been described in idealized theoretical and experimental conditions. Here, we consider bubble pinch-off in a turbulent flow representative of natural conditions in the presence of strong and random perturbations, combining laboratory experiments, numerical simulations, and theoretical modeling. We show that the turbulence sets the initial conditions for pinch-off, namely the initial bubble shape and flow field, but after the pinch-off starts, the turbulent time at the neck scale becomes much slower than the pinching dynamics: The turbulence freezes. We show that the average …


Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield Dec 2019

Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield

Faculty Publications

The purpose of this study is to quantify the detrimental effects of atomic oxygen and ultraviolet (UV) C radiation on the mechanical properties, electrical conductivity, and piezoresistive effect of acid-spun carbon nanotube (CNT) yarns. Monotonic tensile tests with in-situ electrical resistance measurements were performed on pristine and exposed yarns to determine the effects of the atomic oxygen and UVC exposures on the yarn’s material properties. Both type of exposures were performed under vacuum to simulate space environment conditions. The CNT yarns’ mechanical properties did not change significantly after being exposed to UV radiation, but were significantly degraded by the atomic …


Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami Dec 2019

Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Analyzing the fracture of heterogeneous materials is a complex problem, due to the fact that the mechanical behavior of a heterogeneous material is strongly dependent on a variety of factors, such as its microstructure, the properties of each constituent, and interactions between them. Therefore, these factors must be effectively taken into account for accurate analysis, for which the multiscale method has been widely used. In this scheme, the computational homogenization method is used to obtain the effective macroscopic properties of a heterogeneous material based on the response of a Representative Volume Element (RVE). The growth of damage in an RVE …


Magnetic Field Induced Ferrofluid Droplet Breakup In A Simple Shear Flow At A Low Reynolds Number, Md Rifat Hassan, Cheng Wang Dec 2019

Magnetic Field Induced Ferrofluid Droplet Breakup In A Simple Shear Flow At A Low Reynolds Number, Md Rifat Hassan, Cheng Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The breakup phenomenon of a ferrofluid droplet in a simple shear flow under a uniform magnetic field is numerically investigated in this paper. The numerical simulation, based on the finite element method, uses a level set method to capture the dynamic evolution of the droplet interface between the two phases. Focusing on small Reynolds numbers (i.e., Re ≤ 0.03), systematic numerical simulations are carried out to analyze the effects of magnetic field strength, direction, and viscosity ratio on the breakup phenomenon of the ferrofluid droplet. The results suggest that applying a magnetic field along α = 45° and 90° relative …


Droplets As Carriers For Flexible Electronic Devices, Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Ling, Ya Li, Hang Xu, Cheng Wang, Xian Huang Dec 2019

Droplets As Carriers For Flexible Electronic Devices, Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Ling, Ya Li, Hang Xu, Cheng Wang, Xian Huang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Coupling soft bodies and dynamic motions with multifunctional flexible electronics is challenging, but is essential in satisfying the urgent and soaring demands of fully soft and comprehensive robotic systems that can perform tasks in spite of rigorous spatial constraints. Here, the mobility and adaptability of liquid droplets with the functionality of flexible electronics, and techniques to use droplets as carriers for flexible devices are combined. The resulting active droplets (ADs) with volumes ranging from 150 to 600 µL can conduct programmable functions, such as sensing, actuation, and energy harvesting defined by the carried flexible devices and move under the excitation …


Fatigue Issues And Mitigation Strategies In Collegiate Aviation, Flavio A. C. Mendonca Ph.D., Julius Keller, Erik Levin, Aaron Teo Dec 2019

Fatigue Issues And Mitigation Strategies In Collegiate Aviation, Flavio A. C. Mendonca Ph.D., Julius Keller, Erik Levin, Aaron Teo

Publications

The reduction of fatigue-related accidents has been in the NTSB most wanted list since 2016 (NSTB, 2019).

Most research studies have focused on fatigue identification and management within the commercial and/or military aviation environments (Caldwell et al., 2009; Gawron, 2016; Sieberichs & Kluge, 2016).

However, collegiate aviation may be the most challenging in terms of fatigue mitigation. Flight instructors and students often have schedules which may increase the risks for fatigue.


Analysis Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves, Kyle D. Moore, Anthony N. Palazotto Dec 2019

Analysis Of A Celestial Icosahedron Shaped Vacuum Lighter Than Air Vehicle, Dustin P. Graves, Kyle D. Moore, Anthony N. Palazotto

Faculty Publications

Excerpt: The celestial icosahedron geometry is considered as a potential design for a vacuum lighter than air vehicle. The goal of this research is ultimately to determine the feasibility of the design and to understand the initial fluid-structure interaction of the vacuum lighter than air vehicle and the surrounding airflow.


Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang Nov 2019

Experimental Characterization Of Thermal-Hydraulic Performance Of A Microchannel Heat Exchanger For Waste Heat Recovery, James Yih, Hailei Wang

Mechanical and Aerospace Engineering Faculty Publications

Given size and performance advantages, microchannel heat exchangers are becoming increasingly important for various energy recovery and conversion processes. In this study, detailed experimental measurements were conducted to characterize flow and heat transfer performance of a microchannel heat recovery unit (HRU) manufactured using standard photochemical etching and diffusion bonding processes. According to the global flow and temperature measurement, the HRU has delivered the predicted thermal performance under various oil and air flow rates. As expected, the heat transfer effectiveness varies between 88% and 98% for a given air and oil flow rates while it increases with air inlet temperature due …


A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen Nov 2019

A Co-Optimal Coverage Path Planning Method For Aerial Scanning Of Complex Structures, Zhexiong Shang, Justin Bradley, Zhigang Shen

Department of Construction Engineering and Management: Faculty Publications

The utilization of unmanned aerial vehicles (UAVs) in survey and inspection of civil infrastructure has been growing rapidly. However, computationally efficient solvers that find optimal flight paths while ensuring high-quality data acquisition of the complete 3D structure remains a difficult problem. Existing solvers typically prioritize efficient flight paths, or coverage, or reducing computational complexity of the algorithm – but these objectives are not co-optimized holistically. In this work we introduce a co-optimal coverage path planning (CCPP) method that simultaneously co-optimizes the UAV path, the quality of the captured images, and reducing computational complexity of the solver all while adhering to …


Transport Phenomena In The Knudsen Layer Near An Evaporating Surface, Eric Bird, Zhi Liang Oct 2019

Transport Phenomena In The Knudsen Layer Near An Evaporating Surface, Eric Bird, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Combination of the Kinetic Theory of Gases (KTG), Boltzmann Transport Equation (BTE), and Molecular Dynamics (MD) Simulations, We Study the Transport Phenomena in the Knudsen Layer Near a Planar Evaporating Surface. the MD Simulation is First Used to Validate the Assumption Regarding the Anisotropic Velocity Distribution of Vapor Molecules in the Knudsen Layer. based on This Assumption, We Use the KTG to Formulate the Temperature and Density of Vapor at the Evaporating Surface as a Function of the Evaporation Rate and the Mass Accommodation Coefficient (MAC), and We Use These Vapor Properties as the Boundary Conditions to Find …


Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott Oct 2019

Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

We investigate the impact and penetration of a solid sphere passing through gelatine at various impact speeds up to 143.2 m s-1 Tests were performed with several concentrations of gelatine. Impacts for low elastic Froude number Fre a ratio between inertia and gelatine elasticity, resulted in rebound. Higher Fre values resulted in penetration, forming cavities with prominent surface textures. The overall shape of the cavities resembles those observed in water-entry experiments, yet they appear in a different order with respect to increasing inertia: rebound, quasi-seal, deep-seal, shallow-seal and surface-seal. Remarkably, similar to the WeBo phase …


Unmanned Aircraft System (Uas) Technology And Applications In Agriculture, Samuel C. Hassler, Fulya Baysal-Gurel Oct 2019

Unmanned Aircraft System (Uas) Technology And Applications In Agriculture, Samuel C. Hassler, Fulya Baysal-Gurel

Agricultural and Environmental Sciences Faculty Research

Numerous sensors have been developed over time for precision agriculture; though, only recently have these sensors been incorporated into the new realm of unmanned aircraft systems (UAS). This UAS technology has allowed for a more integrated and optimized approach to various farming tasks such as field mapping, plant stress detection, biomass estimation, weed management, inventory counting, and chemical spraying, among others. These systems can be highly specialized depending on the particular goals of the researcher or farmer, yet many aspects of UAS are similar. All systems require an underlying platform—or unmanned aerial vehicle (UAV)—and one or more peripherals and sensing …


Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz Oct 2019

Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz

Faculty Publications

The effects of atomic oxygen and thermal fatigue on two different types of carbon nanotube sheets were studied. One set was treated with nitric acid, while the other set was left untreated. Monotonic tensile tests were performed before and after exposure to determine the effects of either exposure type on the sheets’ mechanical properties. Electrical conductivity and electromagnetic interference measurements were recorded to determine the effects of AO-exposure and thermal cycling on the sheets’ electrical properties. Neither exposure type affected the sheets’ specific strengths. Both exposure types increased the sheets’ specific stiffnesses and decreased the sheets’ strains at failure. The …


Possible Detection Of Low Energy Solar Neutrons Using Boron Based Materials, Nicole Benker, Elena Echeverria, Robert Olesen, Brant E. Kananen, John W. Mcclory, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, George Glenn Peterson, Ben Bradley, Ethiyal R. Wilson, James C. Petrosky, Bin Dong, Jeffry Kelber, Jennifer Hamblin, Jaques Doumani, Peter A. Dowben, Alex Enders Oct 2019

Possible Detection Of Low Energy Solar Neutrons Using Boron Based Materials, Nicole Benker, Elena Echeverria, Robert Olesen, Brant E. Kananen, John W. Mcclory, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, George Glenn Peterson, Ben Bradley, Ethiyal R. Wilson, James C. Petrosky, Bin Dong, Jeffry Kelber, Jennifer Hamblin, Jaques Doumani, Peter A. Dowben, Alex Enders

Faculty Publications

Solar neutrons have been detected aboard the International Space Station (ISS), using lithium tetraborate and boron carbide detector elements. We find that evidence of a solar neutron flux, as detected in a neutron calorimeter following subtraction of the proton background, with an energy of about 2 to 4 MeV. This solar neutron flux is likely no more than 250 to 375 neutrons cm−2sec−1, with a lower bound of 50–75 neutrons cm−2sec−1 at one au.


A Test-Bed For Measuring Uas Servo Reliability, Abdelrahman Elsaid, Daniel Kwasi Adjekum, John Nordlie, Fatima El Jamiy Sep 2019

A Test-Bed For Measuring Uas Servo Reliability, Abdelrahman Elsaid, Daniel Kwasi Adjekum, John Nordlie, Fatima El Jamiy

Aviation Faculty Publications

Extant literature suggests minimal research on the reliability of Commercial off-the-shelf (COTS) components used in fabricating non-military Unmanned Aerial System (UAS). Stochastic failures of components during operational cycles over time poses a safety hazard to flight operations. The purpose of the study was to critically assess the operational performance standards (reliability) of a laboratory designed UAS component test-bed operated using real-world data collected from a Boeing Scan Eagle® UAS aileron servo unit via a flight data recorder. The study hypothesized that the test-bed’s reliability, in terms of a measured encoder output of commanded servo positions, will not be significantly …


Wind Tunnel Measurements And Data Analysis Tutorial, Nihad E. Daidzic Sep 2019

Wind Tunnel Measurements And Data Analysis Tutorial, Nihad E. Daidzic

Aviation Department Publications

This tutorial gives details on processing of raw aerodynamic data measured directly in the wind tunnel on airfoils and wings. Also procedures and equations from the lab report are given and demonstrated how to compute geometric characteristics of wings/airfoils and air data. All numeric results are typically rounded to five significant digits.


Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic Sep 2019

Aircraft Hydraulic Systems - Fundamentals, Nihad E. Daidzic

Aviation Department Publications

Aircraft hydraulic systems are essential non-propulsive power systems. Hydraulic power systems are used to power major functional aircraft systems, such as flight controls (primary and secondary), friction braking, nose gear steering, thrust-reversers, operating heavy cargo doors, etc.


Simplified 2d Skin Lattice Models For Multi-Axial Camber Morphing Wing Aircraft, Bashir Alsaidi, Woong Yeol Joe, Muhammad Akbar Aug 2019

Simplified 2d Skin Lattice Models For Multi-Axial Camber Morphing Wing Aircraft, Bashir Alsaidi, Woong Yeol Joe, Muhammad Akbar

Mechanical and Manufacturing Engineering Faculty Research

Conventional fixed wing aircraft require a selection of certain thickness of skin material that guarantees structural strength for aerodynamic loadings in various flight modes. However, skin structures of morphing wings are expected to be flexible as well as stiff to structural and coupled aerodynamic loadings from geometry change. Many works in the design of skin structures for morphing wings consider only geometric compliance. Among many morphing classifications, we consider camber rate change as airfoil morphing that changes its rate of the airfoil that induces warping, twisting, and bending in multi-axial directions, which makes compliant skin design for morphing a challenging …


Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison Aug 2019

Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison

Journal Articles

Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered …


Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison Aug 2019

Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison

Journal Articles

Wireless intraspacecraft communication technology is being developed for signal transfer on space missions to save weight and simplify the design. One consideration for this new technology is its interaction with space environmentinduced electrostatic discharges (ESDs). The short time scales of spacecraft ESD events result in broad frequency band signals that can interact with high-frequency wireless antennas. These interactions present a source of signal noise. However, they also present a possibility of in-flight wireless ESD monitoring. We present laboratory measurements of arcing on common spacecraft insulators using commercially available single-band 2.4-GHz and dual-band 2.4-/5.8-GHz Wi-Fi antennas. These wireless detections are shown …


Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Kylee Vander Velde, Sami Ali Jul 2019

Advanced Photogrammetric Modeling Of Dranoc Kullas Using Small Unmanned Aircraft Systems, George Gebert, Liam Griffin, Justin Lawlor, Lauren Davis, Kylee Vander Velde, Sami Ali

Student Works

Small unmanned aircraft systems (sUAS), also known as drones, offer new capabilities for cultural heritage preservation activities. Student researchers from Embry-Riddle Aeronautical University have applied photogrammetric techniques based upon sUAS captured imagery to assist with historical site documentation and cultural heritage preservation in the Republic of Kosovo. Imagery from three locations -- Isniq, Dranoc and Junik -- highlight this work. Student researchers created georectified orthomosaics and 3D virtual objects. At each of these three locations the object of interest was a type of building known as a kulla. These kullas are fortified homes built for protecting large families and are …


Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal Jul 2019

Comparative Analysis Of Small Unmanned Aircraft Systems Operations Manuals, Stephen M. Cigal

Student Works

With over 100,000 remote pilots in the United States, individuals and companies are rapidly incorporating unmanned aircraft system technologies into their everyday life and businesses models. The companies that use these technologies must comply with federal and state regulations in order to maintain a safe environment to operate. These operations must also be accepted by the general public. Since the FAA regulations for small unmanned aircraft systems (sUAS) went into effect in 2016, supplemented by additional state and/or local requirements, some companies have generated operations manuals (OM) to ensure consistent, safe flight that meets these requirements. By analyzing the OM’s …


How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott Jul 2019

How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

In densely packed groups demonstrating collective behaviour, such as bird flocks, fish schools or packs of bicycle racers (cycling pelotons), information propagates over a network, with individuals sensing and reacting to stimuli over relatively short space and time scales. What remains elusive is a robust, mechanistic understanding of how sensory system properties affect interactions, information propagation and emergent behaviour. Here, we show through direct observation how the spatio-temporal limits of the human visual sensory system govern local interactions and set the network structure in large, dense collections of cyclists. We found that cyclists align in patterns within a ± 30° …


Computational Analysis Of 3d Lattice Structures For Skin In Real-Scale Camber Morphing Aircraft, Bashir Alsaidi, Woong Yeol Joe, Muhammad Akbar Jul 2019

Computational Analysis Of 3d Lattice Structures For Skin In Real-Scale Camber Morphing Aircraft, Bashir Alsaidi, Woong Yeol Joe, Muhammad Akbar

Mechanical and Manufacturing Engineering Faculty Research

Conventional or fixed wings require a certain thickness of skin material selection that guarantees structurally reliable strength under expected aerodynamic loadings. However, skin structures of morphing wings need to be flexible as well as stiff enough to deal with multi-axial structural stresses from changed geometry and the coupled aerodynamic loadings. Many works in the design of skin structures for morphing wings take the approach either of only geometric compliance or a simplified model that does not fully represent 3D real-scale wing models. Thus, the main theme of this study is (1) to numerically identify the multi-axial stress, strain, and deformation …


Range Of Motion Evaluation Of A Final Frontier Design Iva Spacesuit Using Motion Capture, Ryan L. Kobrick, Nicholas Lopac, Chase Covello, Benjamin Banner, Theodore Southern, Nikolay Moiseev Jul 2019

Range Of Motion Evaluation Of A Final Frontier Design Iva Spacesuit Using Motion Capture, Ryan L. Kobrick, Nicholas Lopac, Chase Covello, Benjamin Banner, Theodore Southern, Nikolay Moiseev

Publications

Embry-Riddle Aeronautical University’s Spacesuit Utilization of Innovative Technology Laboratory (S.U.I.T. Lab) is focused on improving human performance in spaceflight by concentrating on spacesuit research for intravehicular activities (IVA) and extravehicular activities (EVA). The design and execution of range of motion (ROM) protocols in an experimental setting will provide insight on the functions and restrictions of spacesuits, aiding in current and future designs or modification. The S.U.I.T. Lab worked with Final Frontier Design (FFD) to provide a quantitative analysis protocol for seated arm mobility of their NASA Flight Opportunities Program (FOP) IVA spacesuit. The lab used reflective tracking markers on three …


The Potentiality Of Space Enterprise Force Reconstitution: Nationalizing Civilian Satellites During Kinetic Conflicts, Robert A. Bettinger, Sara Schmitt Jul 2019

The Potentiality Of Space Enterprise Force Reconstitution: Nationalizing Civilian Satellites During Kinetic Conflicts, Robert A. Bettinger, Sara Schmitt

Faculty Publications

This article will discuss the possibility of employing a policy of civilian satellite nationalization during a space war as a means of US Space Enterprise force re- constitution to ensure continued access to space capabilities necessary for the execution of the national strategy, as well as deterring potential adversaries from initiating counterspace hostilities. In terms of structure, the authors will examine the thesis by answering these questions. First, what historical precedent exists for the rapid military acquisition of civilian assets via nationalization? Second (given the unique nature of space as an operational environment), can that historical precedent be applied to …


Keeping Your Distance: The Science Of Turns-Around-A-Point And Ground Reference Maneuvers, Nihad E. Daidzic Jul 2019

Keeping Your Distance: The Science Of Turns-Around-A-Point And Ground Reference Maneuvers, Nihad E. Daidzic

Aviation Department Publications

Ground reference maneuvers are more important than you may think. Frequently regarded as unimportant or boring, ground reference maneuver training is often limited to a few minutes of flight instructor demonstration and brief student practice.


Spatially Continuous Strain Monitoring Using Distributed Fiber Optic Sensors Embedded In Carbon Fiber Composites, Sasi Jothibasu, Yang Du, Sudharshan Anandan, Gurjot S. Dhaliwal, Rex E. Gerald Ii, Steve Eugene Watkins, K. Chandrashekhara, Jie Huang Jul 2019

Spatially Continuous Strain Monitoring Using Distributed Fiber Optic Sensors Embedded In Carbon Fiber Composites, Sasi Jothibasu, Yang Du, Sudharshan Anandan, Gurjot S. Dhaliwal, Rex E. Gerald Ii, Steve Eugene Watkins, K. Chandrashekhara, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

A distributed fiber optic strain sensor based on Rayleigh backscattering, embedded in a fiber-reinforced polymer composite, has been demonstrated. The optical frequency domain reflectometry technique is used to analyze the backscattered signal. The shift in the Rayleigh backscattered spectrum is observed to be linearly related to the change in strain of the composite material. The sensor (standard single-mode fiber) is embedded between the layers of the composite laminate. A series of tensile loads is applied to the laminate using an Instron testing machine, and the corresponding strain distribution of the laminate is measured. The results show a linear response indicating …


Many-Objective Hybrid Optimization Under Uncertainty With Applications, Sohail Reddy Jun 2019

Many-Objective Hybrid Optimization Under Uncertainty With Applications, Sohail Reddy

FIU Electronic Theses and Dissertations

A novel method for solving many-objective optimization problems under uncertainty was developed. It is well known that no single optimization algorithm performs best for all problems. Therefore, the developed method, a many-objective hybrid optimizer (MOHO), uses five constitutive algorithms and actively switches between them throughout the optimization process allowing for robust optimization. MOHO monitors the progress made by each of the five algorithms and allows the best performing algorithm more attempts at finding the optimum. This removes the need for user input for selecting algorithm as the best performing algorithm is automatically selected thereby increasing the probability of converging to …


Turbine Passage Design Methodology To Minimize Entropy Production-A Two-Step Optimization Strategy, Paht Juangphanich, Cis De Maesschalck, Guillermo Paniagua Jun 2019

Turbine Passage Design Methodology To Minimize Entropy Production-A Two-Step Optimization Strategy, Paht Juangphanich, Cis De Maesschalck, Guillermo Paniagua

School of Aeronautics and Astronautics Faculty Publications

Rapid aerodynamic design and optimization is essential for the development of future turbomachinery. The objective of this work is to demonstrate a methodology from 1D mean-line-design to a full 3D aerodynamic optimization of the turbine stage using a parameterization strategy that requires few parameters. The methodology is tested by designing a highly loaded and efficient turbine for the Purdue Experimental Turbine Aerothermal Laboratory. This manuscript describes the entire design process including the 2D/3D parameterization strategy in detail. The objective of the design is to maximize the entropy definition of efficiency while simultaneously maximizing the stage loading. Optimal design trends are …