Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Sky Surveys Scheduling Using Reinforcement Learning, Andres Felipe Alba Hernandez Jan 2019

Sky Surveys Scheduling Using Reinforcement Learning, Andres Felipe Alba Hernandez

Graduate Research Theses & Dissertations

Modern cosmic sky surveys (e.g., CMB S4, DES, LSST) collect a complex diversity of astronomical objects. Each of class of objects presents different requirements for observation time and sensitivity. For determining the best sequence of exposures for mapping the sky systematically, conventional scheduling methods do not optimize the use of survey time and resources. Dynamic sky survey scheduling is an NP-hard problem that has been therefore treated primarily with heuristic methods. We present an alternative scheduling method based on reinforcement learning (RL) that aims to optimize the use of telescope resources for scheduling sky surveys.

We present an exploration of …


Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy Jan 2019

Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy

Graduate Research Theses & Dissertations

Molecular dynamics (MD) simulations can be used to compute static structure factors (��(��)) and provide an interpretation of the underlying periodic atomic ordering. MD simulations complement experimentally measured ��(��) by allowing qualitative assignment of peaks to various ordering, such as cation-anion ordering in ionic liquids, via decomposition of ��(��) into partial ��(��). Here we present a method for classifying interatomic distances that allows for quantitative peak assignment and visualization of atoms that contribute most to each peak in calculated ��(��) for soft materials. The method is illustrated by investigating ��(��) for the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C4C1pyrrTFSI), which shows two …


Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles Jan 2019

Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles

Graduate Research Theses & Dissertations

Cellulose nanocrystals (CNCs) are a distinctive nanomaterial derived from cellulose, the most abundant natural polymer on Earth, and the primary reinforcing structural component of cellulose fibrils found within the plant cell wall. These nanocrystals exhibit mechanical properties comparable to synthetic aramid fibers but are advantageous as they are biodegradable, renewable, and can be produced sustainably as they are predominantly extracted from naturally occurring cellulosic materials. These qualities make it a sustainable, highly renewable and environmentally friendly material to be used in place of synthetic materials in a variety of applications. With their high surface area to volume ratio, low level …


Exploring Cyber-Physical Systems, Misbah Uddin Mohammed Jan 2019

Exploring Cyber-Physical Systems, Misbah Uddin Mohammed

Graduate Research Theses & Dissertations

The advances in IOT, Computer Vision, AI and Machine Learning have made these technologies ubiquitous to our daily lives. From Smart Phones to Connected Vehicles, Cyber Physical systems have been interspersed into everything we interact in today’s world. The aim or this thesis was to explore these advances in Cyber Physical Systems and analyze the different sectors they were affecting. We then hand-picked certain domains and explored further by carrying out practical projects using some of the latest software and hardware resources available. Technologies like Amazon Alexa services, NVIDIA Jetson boards, TensorFlow, OpenCV, NodeJS were heavily employed in our various …


The Treatment Of Contaminated Water Using Electrocoagulation, Adebayo Edward Adejinle Jan 2019

The Treatment Of Contaminated Water Using Electrocoagulation, Adebayo Edward Adejinle

Graduate Research Theses & Dissertations

Wastewater treatment is a process that is used to remove significant amount of contaminant concentration from wastewater, which prevents harm to the environment. Chemical coagulation (CC) is one of the most influential processes used to remove contaminants, and it is the addition of chemicals called coagulants, which causes particles to stick together forming bigger flocs. However, as effective as CC is, it requires bench scale testing for determining the appropriate dosing rate for specific raw water properties, which makes the process time consuming. To eliminate these issues, the introduction of the Electrocoagulation (EC) process is considered. The EC process is …


Thermal Analysis And Design Of Conduction Links For A Superconducting Radio Frequency Resonator, Aaron Mckeown Jan 2019

Thermal Analysis And Design Of Conduction Links For A Superconducting Radio Frequency Resonator, Aaron Mckeown

Graduate Research Theses & Dissertations

The SRF conduction link project at Fermi National Accelerator Laboratory aims to develop an SRF particle accelerator design that is more applicable for industrial use. Collaboration between NIU college of engineering and NIU department of physics provided the bulk of design and analysis for this project. Currently, cooling systems, used in SRF particle accelerators, pump liquid helium across the SRF cavity to provide convection based cooling. The goal of this project is to incorporate a conduction based cooling system. In a conduction based cooling system, heat will flow from the SRF cavity into a cryocooler through a conduction link. In …


Magnetotransport In Zrte5 Crystals, Maksim Andreevich Sultanov Jan 2019

Magnetotransport In Zrte5 Crystals, Maksim Andreevich Sultanov

Graduate Research Theses & Dissertations

ZrTe5 is a topological material that is predicted to have a strain or temperature induced phase transition from a topological insulator state into a Weyl/Dirac semimetal state. In this study I find that there is insufficient evidence to support the claims for the existence of such a phase transition. I performed magnetoresistivity measurements using a Quantum Design Physical Properties Measurement System (PPMS) to measure the transverse and longitudinal resistivities at various temperatures and different strengths and orientations of the magnetic field. The measurement results were analyzed using OriginPro to determine the carrier mobility and density and to determine the temperature …