Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

The Macro-Modelling Of Steel Fiber Reinforced Concrete/Mortar Flexural Tensile Behavior And Mix Optimization For Flexural Strength., Li Liu Aug 2017

The Macro-Modelling Of Steel Fiber Reinforced Concrete/Mortar Flexural Tensile Behavior And Mix Optimization For Flexural Strength., Li Liu

Electronic Theses and Dissertations

With the continuous advances in materials’ technology, the performance of the commonly used concrete building material has continued to improve. Compressive strengths exceeding 75 MPa are now being used in applications throughout the world. However, the concrete becomes less ductile and more susceptible to sudden failures with increases in its compressive strength. Although the behavior of concrete is generally governed by its compressive strength, its tensile strength, although much lower, is also important. This tensile strength impacts appearance, the serviceability and durability of concrete elements. In addition, minimum levels of tensile strength are required for many concrete applications including, earthquake …


The Relationship Between Structural Parameters And Mechanical Properties Of Cactus Spines, Jorge Armando Martinez, Pamela Liz Szeto, Theresa Mae Stewart Jun 2017

The Relationship Between Structural Parameters And Mechanical Properties Of Cactus Spines, Jorge Armando Martinez, Pamela Liz Szeto, Theresa Mae Stewart

Materials Engineering

Considering an increasing interest in renewable, biodegradable resources that exhibit excellent mechanical properties, 24 species of cactus spines were investigated using three-point bend testing, X-ray diffraction (XRD) for structural parameters, and scanning electron microscopy (SEM) to analyze fracture surfaces. Additionally, a density of about 1.3 g/cm3 was measured for each spine utilizing the displacement method, closely matching existing data from literature. The flexural modulus varied greatly between species, ranging from 1.22 GPa (Echinocactus polycephalus) to 43.58 GPa (Stenocereus thurberi). In addition, flexural strength and strain to failure was also measured for each spine. XRD analysis of …


Impact Of Clip Connection And Insulation Thickness On Bracing Of Purlins In Standing Seam Roof Systems, Michael W. Seek, Daniel Mclaughlin Jan 2017

Impact Of Clip Connection And Insulation Thickness On Bracing Of Purlins In Standing Seam Roof Systems, Michael W. Seek, Daniel Mclaughlin

Engineering Technology Faculty Publications

The flexural strength of purlins in standing seam roof systems is highly dependent upon the extent to which the sheathing provides lateral and torsional restraint. Typical models to predict the restraint provided by the sheathing assume that the plane of lateral resistance occurs at the top flange of the purlin. In reality, depending on the configuration of the clip and the amount of insulation located between the purlin and the clip, the plane of lateral resistance and corresponding center of rotation shifts above the top flange. This distance, referred to as the effective standoff, is important to evaluate the effectiveness …