Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Rocket

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 44

Full-Text Articles in Engineering

Oxider To Fuel Ratio Shift Compensation Via Vortex Strength Control In Hybrid Rocket Motors, Max W. Francom May 2024

Oxider To Fuel Ratio Shift Compensation Via Vortex Strength Control In Hybrid Rocket Motors, Max W. Francom

All Graduate Theses and Dissertations, Fall 2023 to Present

Hybrid motors have existed as a hypothetical propulsion system for decades in a wide range of upper stage rocket motors due to their simple, robust, non-toxic, and versatile nature. However, inherent to hybrids is Oxidizer to Fuel ratio (O/F) shift over time, which results in performance losses for the majority of the rocket’s lifetime. The purpose of this study is to develop a hybrid rocket motor capable of manipulating O/F at will, resulting in an engine which eliminates the undesirable effects of O/F shift. By developing and refining a numerical simulation, a novel injector system, and an open-loop control scheme, …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow Jul 2023

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


Low-Erosion Nozzle Materials For Long-Duration Hybrid Rocket Burns, Russell S. Babb May 2023

Low-Erosion Nozzle Materials For Long-Duration Hybrid Rocket Burns, Russell S. Babb

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Hybrid rocket systems, which employ a solid fuel grain and a liquid oxidizer, are a low-cost and environmentally friendly alternative to traditional rocket systems. However, hybrid rockets suffer from an increased nozzle throat erosion rate, which impacts motor performance and reliability. To address this issue several materials and low-erosion nozzle configurations were tested. The results of the testing campaign produced a nozzle that reduce the throat erosion rate five-fold.


Investigation Of Interplanetary Trajectories To Sedna, John W. Sarappo Iii, Samuel Brickley, Iliane Domenech, Lorenzo Franceschetti, James E. Lyne May 2023

Investigation Of Interplanetary Trajectories To Sedna, John W. Sarappo Iii, Samuel Brickley, Iliane Domenech, Lorenzo Franceschetti, James E. Lyne

Chancellor’s Honors Program Projects

No abstract provided.


Nasa Student Launch - Payload, Eli Kirk Jan 2023

Nasa Student Launch - Payload, Eli Kirk

All Undergraduate Projects

A team of mechanical engineering, physics, and computer science students from Central Washington University have constructed a fully functional subscale model rocket to be flown at the NASA Student Launch competition. The rocket’s payload was designed to open the nose cone and take a photo of the rocket’s surroundings after descending from the launch. Smaller parts were constructed through machining and 3D printing that will be added to the purchased major component, the linear actuator, in order to perform the required tasks. These tasks are signaled by an attached electronics board, which will receive an RF command remotely, execute code, …


Nasa Student Rocket Launch, Ethan Stapleton Jan 2023

Nasa Student Rocket Launch, Ethan Stapleton

All Undergraduate Projects

The Rocketry Payload team consisting of Kallysta, Eli and Ethan needed to build a payload that flew in a rocket also built by the team. After the rocket has landed, a camera is deployed outside the rocket through a 3-inch gap created by a linear actuator. The camera must rotate 360 degrees and take photos of the surrounding area. The entire system must weigh less than 4.4 pounds as well. The team designed this system using their knowledge obtained through the Mechanical Engineering program at Central Washington University. It was important for them to keep in mind that the system …


Evaluation And Implementation Of Lean Engineering Principles For Improving A University Rocket Team, Alan Garcia Dec 2022

Evaluation And Implementation Of Lean Engineering Principles For Improving A University Rocket Team, Alan Garcia

Open Access Theses & Dissertations

In the present day, lean is a tool applied to manufacturing industries trying to reduce wasteand non-value-added work to every process during the supply chain. While implementing lean thinking in the industry has been highly effective, it is less common for academic purposes. However, it can also improve performance if the concept is correctly applied. The purpose of this thesis is to show and analyze the application of Lean Engineering thinking and its six principles to the Sun City Summit Rocket Team from the University of Texas at El Paso which competed in the Intercollegiate Rocket Engineering Competition (IREC) Spaceport …


Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger Apr 2022

Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger

Doctoral Dissertations and Master's Theses

The landing and reusability of space vehicles is one of the driving forces into renewed interest in space utilization. For missions to planetary surfaces, this soft landing has been most commonly accomplished with parachutes. However, in spite of their simplicity, they are susceptible to parachute drift. This parachute drift makes it very difficult to predict where the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead, recent focus has been put into developing a powered landing through gimbaled thrust. This gimbaled thrust output is dependent on robust path planning and controls algorithms. Being able to …


Rocket Motor Nozzle, Corey Hillegass Jan 2020

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat …


Control And Stability Of Upper Stage Launch Vehicle With Hybrid Arc-Ignition Attitude Control System, Steven Russell Bennett Aug 2019

Control And Stability Of Upper Stage Launch Vehicle With Hybrid Arc-Ignition Attitude Control System, Steven Russell Bennett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Utah State University Propulsion Research Laboratory (USUPRL) has recently made significant developments in the area of hybrid rocket systems. This type of propulsion system incorporates a solid fuel and a gas or liquid oxidizer. Hybrid rocket systems are known for their inherent safety, reliability, and restart capability. Over the last several years, the USUPRL has successfully built and tested a hybrid rocket system comprising acrylonitrile butadiene styrene (ABS) plastic and gaseous oxygen (GOX). The system was demonstrated to be fully functional during ground, vacuum, and sub-orbital flight testing. Continuing forward, the USUPRL endeavors to extend the capabilities of this …


Reconstruction Of Attenuated Hybrid Rocket Motor Chamber Pressure Signals Using Maximum Likelihood Estimation And Optimal Deconvolution, Evan M. Zelesnik May 2019

Reconstruction Of Attenuated Hybrid Rocket Motor Chamber Pressure Signals Using Maximum Likelihood Estimation And Optimal Deconvolution, Evan M. Zelesnik

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Chamber pressure, as it develops during rocket combustion, strongly correlates with many of the internal motor ballistics, including combustion stability, fuel regression rate, and mass flow. Chamber pressure is also an essential measurement for calculating achieved thrust coefficient and characteristic velocity. Due to the combustion environment hostility, sensing chamber pressure with high-fidelity presents a difficult measurement problem, especially for solid and hybrid rocket systems where combustion by-products contain high amounts of carbon and other sooty materials. These contaminants tend to deposit within the pneumatic tubing used to transmit pressure oscillations from the thrust chamber to the sensing transducer. Partially clogged …


Design And Development Of Hybrid Rocket For Spaceport America Cup, Benjamin Barnhill, Sean Darling, Austin Springer, Adam Todd, Stewart Whaley May 2019

Design And Development Of Hybrid Rocket For Spaceport America Cup, Benjamin Barnhill, Sean Darling, Austin Springer, Adam Todd, Stewart Whaley

Chancellor’s Honors Program Projects

No abstract provided.


Rocket Telemetry System, Monica Lacek, Clark Bryant Iii, David Dalvin, Nicholas Wolgamott Jan 2019

Rocket Telemetry System, Monica Lacek, Clark Bryant Iii, David Dalvin, Nicholas Wolgamott

Williams Honors College, Honors Research Projects

The goal of this research project is to design a system for the Akronauts Rocket Design Team which will transmit flight data in real-time to a ground station. The data will be collected from various sensors (altitude, acceleration, GPS, etc). This data will be transmitted wirelessly and in real-time to a receiving station. Calculations and visualizations will be taken from the data, which will help the team improve their rocket designs. Additionally, GPS data will be useful to locate the rocket post-flight. Challenges will include the need for the system to transmit over the range of the rocket’s flight and …


Structural Design Of Thrust Measurement System For Cryogenic Rocket Engines, Abner Jael Moreno Tarango Jan 2018

Structural Design Of Thrust Measurement System For Cryogenic Rocket Engines, Abner Jael Moreno Tarango

Open Access Theses & Dissertations

The Center for Space Exploration and Technology Research (cSETR) at The University of Texas at El Paso (UTEP) has been the leader in academia on the development of Liquid Oxygen (LO2) and Liquid Methane (LCH4) propulsion technologies. One of the projects being developed at cSETR is a suborbital vehicle whose mission is to evaluate performance parameters, demonstrate restart capability, and demonstrate the propulsion system operation in microgravity. This vehicle, called Daedalus, will use a 500-lbf LO2-LCH4 rocket engine that can be throttled down to 100-lbf. To accomplish this goal, UTEP partnered with the El Paso County to lease a plot …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


A Security Evaluation Methodology For Container Images, Brendan Michael Abbott Mar 2017

A Security Evaluation Methodology For Container Images, Brendan Michael Abbott

Theses and Dissertations

The goal of this research is to create a methodology that evaluates the security posture of container images and helps improve container security. This was done by first searching for any guidelines or standards that focus on container images and security. After finding none, I decided to create an evaluative methodology. The methodology is composed of actions that users should take to evaluate the security of a container image. The methodology was created through in-depth research on container images and the build instructions used to create them and is referred to as the Security Evaluation Methodology for Container Images. The …


Development And Integration Of The Janus Robotic Lander: A Liquid Oxygen - Liquid Methane Propulsion System Testbed, Raul Ponce Jan 2017

Development And Integration Of The Janus Robotic Lander: A Liquid Oxygen - Liquid Methane Propulsion System Testbed, Raul Ponce

Open Access Theses & Dissertations

Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants.

The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary …


Design Of A 2000 Lbf Lox/Lch4 Throttleable Rocket Engine For A Vertical Lander, Israel Lopez Jan 2017

Design Of A 2000 Lbf Lox/Lch4 Throttleable Rocket Engine For A Vertical Lander, Israel Lopez

Open Access Theses & Dissertations

Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination.

The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH4 …


Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier May 2016

Throttleable Gox/Abs Launch Assist Hybrid Rocket Motor For Small Scale Air Launch Platform, Zachary S. Spurrier

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The ability for an aircraft-based launch platform to place an orbital payload onto a nominal launch trajectory at a higher energy state -- altitude, velocity, flight path angle, and azimuth --using highly-efficient air breathing propulsion instead of a much lower-efficiency rocket system, offers the potential for a significantly smaller launch vehicle. An airborne platform also provides the ability to launch from multiple locations and allows for significantly increased "system responsiveness." The NASA Armstrong Flight Research Center’s Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a …


Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight, Jesus Eduardo Trillo Jan 2016

Design Of A 500 Lbf Liquid Oxygen And Liquid Methane Rocket Engine For Suborbital Flight, Jesus Eduardo Trillo

Open Access Theses & Dissertations

Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored,making the overall mission more cost effective by enabling …


Direct Electrical Arc Ignition Of Hybrid Rocket Motors, Michael I. Judson Jr. May 2015

Direct Electrical Arc Ignition Of Hybrid Rocket Motors, Michael I. Judson Jr.

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct …


Analysis Of Flammability Limits And Gas Properties Of A Solid Rocket Motor Test In A High Altitude Test Facility, Richard Scott Kirkpatrick May 2015

Analysis Of Flammability Limits And Gas Properties Of A Solid Rocket Motor Test In A High Altitude Test Facility, Richard Scott Kirkpatrick

Masters Theses

The testing of solid and liquid rocket propulsion systems in a confined test facility often produces explosive or flammable gases which must be safely handled. Often inert gases such as nitrogen are used to lower the molar fraction of oxygen to low enough levels to minimize the probability of an explosion or deflagration. For this thesis, the chemical composition of these rocket exhaust gases mixed with air were used to determine the flammability limits of the gas mixture. Using the ideal gas law and the conservation of mass, the exhaust gas composition and gas properties such as pressure, temperature, volume …


High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Sean D. Walker May 2015

High Regression Rate Hybrid Rocket Fuel Grains With Helical Port Structures, Sean D. Walker

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Hybrid Rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion charactersitics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. these high aspect ratios produce further reduced fuel regression rate and trust …


Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch Jan 2015

Design Of The Structural And Propulsion Systems For The 2015 University Of Akron Rocket Team, Kyle W. Dehoff, Nicholas J. Hrusch

Williams Honors College, Honors Research Projects

No abstract provided.


Multi-Injector Modeling Of Transverse Combustion Instability Experiments, Kevin "James " Shipley Apr 2014

Multi-Injector Modeling Of Transverse Combustion Instability Experiments, Kevin "James " Shipley

Open Access Theses

Concurrent simulations and experiments are used to study combustion instabilities in a multiple injector element combustion chamber. The experiments employ a linear array of seven coaxial injector elements positioned atop a rectangular chamber. Different levels of instability are driven in the combustor by varying the operating and geometry parameters of the outer driving injector elements located near the chamber end-walls. The objectives of the study are to apply a reduced three-injector model to generate a computational test bed for the evaluation of injector response to transverse instability, to apply a full seven-injector model to investigate the inter-element coupling between injectors …


A Numerical Study Of High Temperature And High Velocity Gaseous Hydrogen Flow In A Cooling Channel Of A Ntr Core, Sajan B. Singh Dec 2013

A Numerical Study Of High Temperature And High Velocity Gaseous Hydrogen Flow In A Cooling Channel Of A Ntr Core, Sajan B. Singh

University of New Orleans Theses and Dissertations

Two mathematical models (a one and a three-dimensional) were adopted to study, numerically, the thermal hydrodynamic behavior of flow inside a single cooling channel of a Nuclear Thermal Rocket (NTR) engine. The first model assumes the flow in the cooling channel to be one-dimensional, unsteady, compressible, turbulent, and subsonic. The working fluid (GH2) is assumed to be compressible. The governing equations of the 1-D model are discretized using a second order accurate finite difference scheme. Also, a commercial CFD code is used to study the same problem. Numerical experiments, using both codes, simulated the flow and heat transfer …


Design And Analysis Of Reusable Nozzles For Cal Poly’S Hybrid Rocket Lab, Cheyne Austin, Jose Vargas Jun 2013

Design And Analysis Of Reusable Nozzles For Cal Poly’S Hybrid Rocket Lab, Cheyne Austin, Jose Vargas

Aerospace Engineering

Two nozzles were designed and constructed for testing in the Cal Poly propulsion laboratory to explore which nozzle was the most capable in producing the most thrust. A 15 degree and 30 degree converging-diverging nozzles were machined and tested. Theory suggest that a bell nozzle would be the most efficient since all of the gasses generated in the combustion chamber are directed and accelerated by the throat leave the nozzle traveling along the thrust axis. All of the momentum of the gasses are directed axially thus resulting in maximum thrust. Thrust should also be produced by the converging-diverging nozzle and …


Rocket Fuel Pressurization, Sean Green, Joe Marcinkowski, Andrew Nahab Jun 2013

Rocket Fuel Pressurization, Sean Green, Joe Marcinkowski, Andrew Nahab

Mechanical Engineering

No abstract provided.


Design And Testing Of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors, Jonathan M. Mcculley May 2013

Design And Testing Of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors, Jonathan M. Mcculley

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The oxidizer is blown though the solid fuel where it is combusted through a nozzle to produce thrust. This research investigated the combination of Acrylonitrile-butadiene-styrene impregnated with paraffin wax as the solid fuel component burned with nitrous oxide. The paraffin provides an enhanced regression rate over ABS; however, it lacks structural integrity and combustion efficiency. Multiple fuel grains with various ABS-to-Paraffin mass ratios were fabricated and burned with nitrous oxide. Analytical predictions for end-to-end motor performance and fuel …


Catalytic Decomposition Of Nitrous Oxide Monopropellant For Hybrid Motor Ignition, Matthew D. Wilson May 2013

Catalytic Decomposition Of Nitrous Oxide Monopropellant For Hybrid Motor Ignition, Matthew D. Wilson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Nitrous oxide (N2O), a commonly-used industrial gas, is also often used as a rocket motor oxidizer. It has been used in both hybrid rocket motors (using a solid fuel and a liquid oxidizer) and liquid rocket engines (using liquid fuel and oxidizer).

As a liquid form, nitrous oxide is highly stable, but in vapor form it can be decomposed, releasing large amounts of heat as it dissociates into nitrogen and oxygen. This project investigates using the energy from decomposing nitrous oxide to ignite a hybrid or liquid rocket. Such a system would be practical in rocket …