Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2020

Nanoparticles

Discipline
Institution
Publication
File Type

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje Oct 2020

Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje

Electronic Thesis and Dissertation Repository

Dual energy (DE) computed tomography (CT) has the capability to influence medicine and pre-clinical research by providing quantitative information that can detect nascent lesions, identify perfusion restoration or inhomogeneities within tissues, and recognize the presence of calcium deposits. A wide variety of instrumentation techniques and scan protocols have been developed for DE CT, with a common goal of acquiring a pair of images that reports the attenuation of a given volume to two different x-ray distributions. While DE image acquisition has benefitted from technical advancements in CT, the contrast agents that are used are still predominantly composed of iodinated small …


Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad Sep 2020

Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad

LSU Doctoral Dissertations

Point-of-care testing (POCT) or Point-of-use (POU) devices or technologies are defined as testing aids that are capable for onsite use or testing. The key advantages of POCT are low sample volume, quick onsite diagnosis, high accuracy, and cost-effectiveness. POCT has the potential and the benefits to facilitate better health care management by rapid routine diagnosis and monitoring. To reach this goal, several researchers as well as the healthcare industry over a few years have conducted cutting edge research to bring science to technology by developing smart diagnostic devices capable of performing as per patient profiles and make personalized health care …


Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia Aug 2020

Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia

Theses & Dissertations

Current materials used for facial prostheses are far from being desirable, and improved properties with “skin-like” feel are needed. This study evaluates property changes induced by sequential additions of uncoated and hydrophobic-coated nano-SiO2 to polydimethylsiloxane (PDMS) and compares them with those measured for conventional submicron SiO2-filled materials. Each filler type was sequentially added to vinyl-terminated PDMS at 0%, 0.5%, 5%, 10%, and 15% by weight. Tensile, tear, Durometer hardness, translucency and viscoelastic properties were evaluated, with hardness and translucency also evaluated following 3000 hours of outdoor weathering. Results demonstrated that 15% coated nano-SiO2-filled PDMS materials …


Nanoparticle-Mediated Controlled Myocardial Drug Delivery: A New Treatment For Hypertrophic Cardiomyopathy, Michelle Katherine Mcgrath Copeland Aug 2020

Nanoparticle-Mediated Controlled Myocardial Drug Delivery: A New Treatment For Hypertrophic Cardiomyopathy, Michelle Katherine Mcgrath Copeland

Bioengineering Dissertations

Hypertrophic cardiomyopathy (HCM) is a genetic disease of the sarcomere, resulting in overgrowth of the septum that separates the left and right ventricles. HCM can affect as many as 1/200 people, making it the most common genetic cardiomyopathy in the general population, as well as the most common cause of sudden cardiac death (SCD). In severe HCM cases, cardiothoracic surgeons perform septal myectomy to remove the excess tissue. However, many patients are poor surgical candidates and require another, less invasive treatment option. In these cases, alcohol septal ablation (ASA) is performed. With ASA, cardiologists deliver pure alcohol through a catheter …


Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou Jul 2020

Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou

Electronic Thesis and Dissertation Repository

Geldart Group C particles become increasingly attractive in industry because of their small particle sizes and large specific surface areas. The main challenge in the flow and fluidization of Geldart Group C particles is their cohesive nature due to strong interparticle forces. The “nanoparticle modulation” technique was adopted to reduce the interparticle forces of Group C particles and thus significantly improved their flow and fluidization quality. Group C+ particles, a new type of fine particles with drastically reduced or insignificant interparticle forces, were created using the nano-modulation technique.

Fundamental studies provided a comprehensive understanding of the fluidization quality of …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah Jun 2020

Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah

Theses and Dissertations

Bijels are made of non-equilibrium particle-stabilized emulsions with a bicontinuous arrangement of the constituent fluid phases. They spontaneously form through arrested spinodal decomposition in mixtures of partially miscible liquids and neutrally wetting colloidal particles. Soon after their discovery over 10 years ago, Prof. Mike Cates, Lucasian Professor of Mathematics, predicted their future use as continuously operated cross-flow reactors for chemical reactions between immiscible reactants.

Towards this goal, work in this thesis focuses on designing bijels via Solvent Transfer Induced Phase Separation (STrIPS) for microfluidic transport applications. Structure-function relationships of STrIPS bijels stabilized by silane functionalized nanoparticles are developed. In-situ surfactant …


Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed Jun 2020

Hyaluronic Acid Coated Targeted Lipid Micellar Nanoparticle As A Delivery Vehicle For Lapatinib And Ketoconazole In Egfr Mutated Lung Cancer, Nadia Tasnim Ahmed

USF Tampa Graduate Theses and Dissertations

Background: According to the American Cancer Society, lung cancer was accountable for over 142,000 deaths in the USA in 2019. Common mutations related to lung cancer mainly occur in TP53, EGFR, and KRAS genes. Lapatinib is a small molecule tyrosine kinase inhibitor which acts reversibly on both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Overexpression of EGFR leads to increased production and signaling of proteins that cause upregulation of cellular proliferation, cholesterol synthesis and resistance to apoptosis. Ketoconazole is an imidazole antifungal agent which works principally by inhibiting the enzyme cytochrome P450 14α-demethylase (CYP51A1) …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu Jun 2020

Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu

Master's Theses

Forward osmosis (FO) is an emerging technology for water treatment due to their ability to draw freshwater using an osmotic pressure gradient across a semi-permeable membrane. However, the lack of draw agents that could both produce reasonable flux and be separated from the draw solution at a low cost stand in the way of widespread implementation. This study had two objectives: evaluate the performance of three materials — peptone, carboxymethyl cellulose (CMC), and magnetite nanoparticles (Fe3O4 NPs) — as potential draw agents, and to use multi-criteria decision matrices to systematically prioritize known draw agents from literature for …


Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma May 2020

Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology has enabled the material synthesis of ‘good’ nanoparticles, as well as, addressed the problem of air pollution by developing particle capture technologies for ‘bad’ nanoparticles. For material synthesis at industrial scale, flame aerosol reactors are extensively used for large-scale industrial production of ‘good’ nanoparticles. But, there exists a knowledge gap in understanding the early stages (1-10 nm) of particle formation and growth, which is necessary for tailoring the synthesized nanoparticles’ properties. To achieve this goal, measurement tools for the characterization of 1-10 nm particles are quintessential. On the other hand, to capture ‘bad’ particles, existing control …


Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek May 2020

Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek

Theses & Dissertations

Surgical resection remains to be the primary treatment for the majority of solid tumors, including breast cancer. The complete removal of the primary tumor, local metastases, and metastatic lymph nodes dramatically improve a patient’s treatment outcome and prognosis. Nevertheless, surgeons are limited to tactile and visual cues in distinguishing malignant and healthy tissue. This can result in a positive surgical margin (PSM), which occurs when tumor goes undetected and is left behind in the surgical cavity. PSMs decreases a patient’s prognosis and necessitate additional treatment in the form of surgery, radiation, and chemotherapy. An emerging imaging modality, known as fluorescence-guided …


Development Of Vegetable Oil Based Nano-Lubricants, Vicente Cortes May 2020

Development Of Vegetable Oil Based Nano-Lubricants, Vicente Cortes

Theses and Dissertations

Nowadays, the depletion of crude oil reserves in the world and the global concern in protecting the environment from contamination have renewed interest in developing environment friendly lubricants derived from alternative sources such as vegetable oils. Mineral oil is the most common lubricant, however, it also has poor biodegradable properties. Vegetable oils exhibit good viscosity index, flash point, pour point, tribological properties, and are biodegradable. Furthermore, the use of nanoparticles as additives has shown to improve anti wear and anti-friction properties of the base lubricant. The present research project will evaluate experimentally the rheological and tribological behavior of coconut oil, …


Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman May 2020

Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman

Chancellor’s Honors Program Projects

No abstract provided.


Scanning Electron Microscopy (Sem) Investigation Of Morphology Changes In The Reduction Of Silica Nanoparticles To Elemental Silicon, Allison M. Cairns Apr 2020

Scanning Electron Microscopy (Sem) Investigation Of Morphology Changes In The Reduction Of Silica Nanoparticles To Elemental Silicon, Allison M. Cairns

University Honors Theses

The application of silicon nanoparticles varies from energy storage materials, to drug-delivery, and molecular recognition. Various chemical and physical properties of the Si nanoparticles arise from their morphology. This paper aims to reveal the morphology of Si nanoparticles following magnesiothermic reduction of silica (SiO2) nanoparticles. Two sets of SiO2 nanoparticles were used, commercially available NanoXact nanoparticles and laboratory-synthesized Stöber nanoparticles. A Zeiss Sigma VP FEG SEM was used to examine the morphology. Following the magnesiothermic reduction, the nanoparticles were etched with HF. Ten sets of images were taken of both Stöber and NanoXact nanoparticles: 1,2: the SiO …


Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni Mar 2020

Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni

LSU Doctoral Dissertations

Over the past decades, the development of light-emitting diodes (LEDs) to produce a wide range of wavelengths has revolutionized the solid-state lighting industry due to their higher energy efficiency and operational lifetimes. These LEDs employ rare earth (RE) doped phosphors due to their stable emission wavelengths which can be amplified when sensitized by other RE dopants (Yb, Ce) or shell layer passivation. However, there has been a push to replace the RE elements in LEDs due to increased socioeconomic issues. One proposed alternative, transition metal (TM) dopants, is typically avoided due to their susceptibility to the local crystal environment resulting …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Microfiltration Membrane Pore Functionalization Approaches For Chloro-Organic Remediation To Heavy Metal Sorption, Mohammad Saiful Islam Jan 2020

Microfiltration Membrane Pore Functionalization Approaches For Chloro-Organic Remediation To Heavy Metal Sorption, Mohammad Saiful Islam

Theses and Dissertations--Chemical and Materials Engineering

Microfiltration polyvinylidene fluoride (PVDF) membranes have distinct advantage for open structure in terms of high internal surface area and ease of access in the pore domain. Functionalization of PVDF membranes with different functional groups (-COOH, -OH, -SH) enables responsive (pH, temperature) properties to membrane, tuning of effective pore size, controlling permeate flux. PVDF microfiltration membrane functionalization with suitable responsive polymer such as poly acrylic acid (PAA) to incorporate carboxyl (-COOH) group enables further modification of functionalized PAA-PVDF membranes for different application ranging from catalysis, bio reactor to heavy metal sorption platform. As a catalytic reactor bed, this PAA-PVDF membranes are …


Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup Jan 2020

Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup

Graduate Research Theses & Dissertations

Despite optics and refraction being among the oldest scientific principles, material limitations have prevented scientists from taking full advantage of the potential this technology holds. Indeed, films with designer optical properties have potential for use in exotic cloaking architectures, advanced waveguides, and precise optical biosensors. This thesis focuses on the fabrication methodology for making thin films with refractive index tuned to a desired value through self-assembly of amorphous nanoparticle films made of organosilicate materials. The inclusion of a slowly evaporating polymer phase along with the organosilicate nanoparticles results in nanopores formed within the film, which effectively reduce the film’s refractive …


Formulation Strategies To Enhance Solubility And Permeability Of Small Molecules For Drug Delivery Applications, Pradeep Kumar Bolla Jan 2020

Formulation Strategies To Enhance Solubility And Permeability Of Small Molecules For Drug Delivery Applications, Pradeep Kumar Bolla

Open Access Theses & Dissertations

All the new chemical entities/drug molecules intended for therapeutic use must be administered using an appropriate delivery system/dosage form to achieve maximum bioavailability. However, designing a drug delivery system is complex as several factors such as lipophilicity, molecular mass, crystallinity, ionic charge, polymorphic forms and hydrogen bonding) affect the solubility and permeability of these molecules. Biopharmaceutics drug classification system (BCS) categorizes the existing drugs into four classes based on the aqueous solubility and membrane permeability and it is reported that >70% of the drugs are poorly soluble and belong to BCS class II and BCS class IV. Several physical, chemical …


Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie Jan 2020

Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie

Theses and Dissertations

Acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes diffuse alveolar damage and a loss of the extracellular matrix (ECM). This leads to pulmonary edema and lung function deterioration. Our lab has created decellularized porcine lung, electrosprayed ECM nanoparticles that have been previously shown to have pro-regenerative capabilities in vitro.

In this study, the ECM nanoparticle effects on young murine lungs were tested in vivo. An ECM nanoparticle suspension, previously used for the in vitro studies, was aerosolized intratracheally into the lungs using a microsprayer. 24 hours later, the lung mechanics, bronchoalveolar lavage fluid, and histology …


Electrospun Fibers With Smart Delivery Of Therapeutic Agents, Zahra Mahdieh Jan 2020

Electrospun Fibers With Smart Delivery Of Therapeutic Agents, Zahra Mahdieh

Graduate Student Theses, Dissertations, & Professional Papers

Electrospinning is the most widely studied technique of producing fibers. Delivery of nanoparticles and therapeutic agents from electrospun fibers have potential uses in various fields including drug delivery, filtration, and cosmetics. However, controlling the delivery rate remains the main challenge. In the current study, core-shell structure fibers were developed with zinc oxide nanoparticles applied in the shell composition to improve the pore structure (release pathway) and mechanical stability. Fine-tuned delivery rates were achieved via loading different sizes of silver nanoparticles (Ag NP) inside the fiber core. In vitro drug release assays showed fast, slow, and intermediate delivery rates of 20 …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …