Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Other Mathematics

Institution
Keyword
Publication Year
Publication

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Convolution And Autoencoders Applied To Nonlinear Differential Equations, Noah Borquaye Dec 2023

Convolution And Autoencoders Applied To Nonlinear Differential Equations, Noah Borquaye

Electronic Theses and Dissertations

Autoencoders, a type of artificial neural network, have gained recognition by researchers in various fields, especially machine learning due to their vast applications in data representations from inputs. Recently researchers have explored the possibility to extend the application of autoencoders to solve nonlinear differential equations. Algorithms and methods employed in an autoencoder framework include sparse identification of nonlinear dynamics (SINDy), dynamic mode decomposition (DMD), Koopman operator theory and singular value decomposition (SVD). These approaches use matrix multiplication to represent linear transformation. However, machine learning algorithms often use convolution to represent linear transformations. In our work, we modify these approaches to …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Quadratic Neural Network Architecture As Evaluated Relative To Conventional Neural Network Architecture, Reid Taylor Apr 2022

Quadratic Neural Network Architecture As Evaluated Relative To Conventional Neural Network Architecture, Reid Taylor

Senior Theses

Current work in the field of deep learning and neural networks revolves around several variations of the same mathematical model for associative learning. These variations, while significant and exceptionally applicable in the real world, fail to push the limits of modern computational prowess. This research does just that: by leveraging high order tensors in place of 2nd order tensors, quadratic neural networks can be developed and can allow for substantially more complex machine learning models which allow for self-interactions of collected and analyzed data. This research shows the theorization and development of mathematical model necessary for such an idea to …


An Algorithm For Biobjective Mixed Integer Quadratic Programs, Pubudu Jayasekara Merenchige Dec 2021

An Algorithm For Biobjective Mixed Integer Quadratic Programs, Pubudu Jayasekara Merenchige

All Dissertations

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. Thus, in this work, we develop a branch and bound (BB) algorithm for solving biobjective mixed-integer quadratic programs (BOMIQPs). An algorithm of this type does not exist in the literature.

The algorithm relies on five fundamental components of the BB scheme: calculating an initial set of efficient solutions with associated Pareto points, solving node problems, fathoming, branching, and set dominance. Considering the properties of the Pareto set of …


Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani May 2021

Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani

Theses and Dissertations

The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and …


Obstructive Wiring Patterns To Circular Planarity In Electrical Networks, Hannah Lebo Jan 2021

Obstructive Wiring Patterns To Circular Planarity In Electrical Networks, Hannah Lebo

Williams Honors College, Honors Research Projects

In order for an electrical network to be printed on a flat surface without changing the network’s input or output, it is important to consider if any wires will cross and if this problem can be avoided. If a circular network can be printed so that no wires cross, the network is said to be circular planar. In this paper, we identify a number of wiring patterns that make circular planarity impossible. We find exactly 3 wiring patterns using circular pairs with sets of two nodes, and we find exactly 78 wiring patterns using circular pairs with sets of three …


Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark Aug 2020

Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark

Industrial Engineering Undergraduate Honors Theses

One of the most common tools for evaluating data is regression. This technique, widely used by industrial engineers, explores linear relationships between predictors and the response. Each observation of the response is a fixed linear combination of the predictors with an added error element. The method is built on the assumption that this error is normally distributed across all observations and has a mean of zero. In some cases, it has been found that the inherent variation is not the result of a random variable, but is instead the result of self-symmetric properties of the observations. For data with these …


From Branches To Fibers - Investigating F-Actin Networks With Biochemistry And Mathematical Modeling, Melissa A. Riddle May 2020

From Branches To Fibers - Investigating F-Actin Networks With Biochemistry And Mathematical Modeling, Melissa A. Riddle

Senior Honors Projects, 2020-current

F-actin networks have different structures throughout the cell depending on their location or mechanical role. For example, at the leading edge of a migrating cell, F-actin is organized in a region called the lamellipodia as a branched network responsible for pushing the membrane outwards. Behind the lamellipodia is a lamellar actin network where focal adhesions and stress fibers originate, and then within the cell cortex, actin is arranged in a gel-like network. Stress fibers are an important organization of F-actin and how they arise from either the branched lamellipodia network or the gel-like cortex network is poorly understood. Our approach …


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr Aug 2019

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood relation …


Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick Jan 2018

Nonlinear Coupled Effects In Nanomaterials, Sia Bhowmick

Theses and Dissertations (Comprehensive)

Materials at the nanoscale have different chemical, structural, and optoelectrical properties compared to their bulk counterparts. As a result, such materials, called nanomaterials, exhibit observable differences in certain physical phenomena. One such resulting phenomenon called the piezoelectric effect has played a crucial role in miniature self-powering electronic devices called nanogenerators which are fabricated by using nanostructures, such as nanowires, nanorods, and nanofilms. These devices are capable of harvesting electrical energy by inducing mechanical strain on the individual nanostructures. Electrical energy created in this manner does not have environmental limitations. In this thesis, important coupled effects, such as the nonlinear piezoelectric …


Optimal Supply Delivery Under Military Specific Constraints, Talena Fletcher Jan 2018

Optimal Supply Delivery Under Military Specific Constraints, Talena Fletcher

Electronic Theses and Dissertations

Through-out military history, the need to safely and effectively allocate resources to various military operations was a task of extreme importance. Satisfying the needs of multiple consumers by optimally pairing with appropriate suppliers falls into the category of vehicle routing problems (VRP), which has been intensively studied over the years. In general, finding the optimal solution to VRP is known to be NP-hard. The proposed solutions rely on mathematical programming and the size of the problems that can be optimally solved is typically limited. In military settings, balancing the needs of multiple consumers with the current operational environment has always …


A Traders Guide To The Predictive Universe- A Model For Predicting Oil Price Targets And Trading On Them, Jimmie Harold Lenz Dec 2016

A Traders Guide To The Predictive Universe- A Model For Predicting Oil Price Targets And Trading On Them, Jimmie Harold Lenz

Doctor of Business Administration Dissertations

At heart every trader loves volatility; this is where return on investment comes from, this is what drives the proverbial “positive alpha.” As a trader, understanding the probabilities related to the volatility of prices is key, however if you could also predict future prices with reliability the world would be your oyster. To this end, I have achieved three goals with this dissertation, to develop a model to predict future short term prices (direction and magnitude), to effectively test this by generating consistent profits utilizing a trading model developed for this purpose, and to write a paper that anyone with …


Parameters Estimation Of Material Constitutive Models Using Optimization Algorithms, Kiswendsida Jules Kere Jan 2015

Parameters Estimation Of Material Constitutive Models Using Optimization Algorithms, Kiswendsida Jules Kere

Williams Honors College, Honors Research Projects

Optimization Algorithms are very useful for solving engineering problems. Indeed, optimization algorithms can be used to optimize engineering designs in terms of safety and economy. Understanding the proprieties of materials in engineering designs is very important in order to make designs safe. Materials are not really perfectly homogeneous and there are heterogeneous distributions in most materials. In this paper, Self-OPTIM which is an inverse constitutive parameter identification framework will be used to identify parameters of a linear elastic material constitutive model. Data for Self-OPTIM will be obtained using ABAQUS simulation of a dog-bone uniaxial test. Optimization Algorithms will be used …


The Simulation & Evaluation Of Surge Hazard Using A Response Surface Method In The New York Bight, Michael H. Bredesen Jan 2015

The Simulation & Evaluation Of Surge Hazard Using A Response Surface Method In The New York Bight, Michael H. Bredesen

UNF Graduate Theses and Dissertations

Atmospheric features, such as tropical cyclones, act as a driving mechanism for many of the major hazards affecting coastal areas around the world. Accurate and efficient quantification of tropical cyclone surge hazard is essential to the development of resilient coastal communities, particularly given continued sea level trend concerns. Recent major tropical cyclones that have impacted the northeastern portion of the United States have resulted in devastating flooding in New York City, the most densely populated city in the US. As a part of national effort to re-evaluate coastal inundation hazards, the Federal Emergency Management Agency used the Joint Probability Method …


Teacher Influence On Elementary School Students’ Participation In Science, Technology, Engineering, And Mathematics, Courtney Hartman Jan 2015

Teacher Influence On Elementary School Students’ Participation In Science, Technology, Engineering, And Mathematics, Courtney Hartman

Honors College Theses

The purpose of this study is to explore the influence of elementary school teachers on encouraging students’ interest and participation in Science, Technology, Engineering, and Mathematics. The researcher sought to understand what methods teachers use in their classrooms to encourage students to participate in STEM subjects and programs. This mixed methods study consisted of a questionnaire to collect quantitative data, as well as an interview of selected teachers who participated in the questionnaire to collect qualitative data. The data was analyzed to determine the overall perceptions of teachers regarding the importance of encouraging students to participate in STEM. The qualitative …


A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek Jan 2014

A Mathematical Framework For Unmanned Aerial Vehicle Obstacle Avoidance, Sorathan Chaturapruek

HMC Senior Theses

The obstacle avoidance navigation problem for Unmanned Aerial Vehicles (UAVs) is a very challenging problem. It lies at the intersection of many fields such as probability, differential geometry, optimal control, and robotics. We build a mathematical framework to solve this problem for quadrotors using both a theoretical approach through a Hamiltonian system and a machine learning approach that learns from human sub-experts' multiple demonstrations in obstacle avoidance. Prior research on the machine learning approach uses an algorithm that does not incorporate geometry. We have developed tools to solve and test the obstacle avoidance problem through mathematics.


A Parabolic Equation Analysis Of The Underwater Noise Radiated By Impact Pile Driving, Nathan Laws Jul 2013

A Parabolic Equation Analysis Of The Underwater Noise Radiated By Impact Pile Driving, Nathan Laws

Dissertations and Theses

Impact pile driving can produce extremely high underwater sound levels, which are of increasing environmental concern due to their deleterious effects on marine wildlife. Prediction of underwater sound levels is important to the assessment and mitigation of the environmental impacts caused by pile driving. Current prediction methods are limited and do not account for the dynamic pile driving source, inhomogeneities in bathymetry and sediment, or physics-based sound wave propagation.

In this thesis, a computational model is presented that analyzes and predicts the underwater noise radiated by pile driving and is suitable for shallow, inhomogeneous environments and long propagation ranges. The …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Cramer-Rao Bound And Optimal Amplitude Estimator Of Superimposed Sinusoidal Signals With Unknown Frequencies, Shaohui Jia Apr 2000

Cramer-Rao Bound And Optimal Amplitude Estimator Of Superimposed Sinusoidal Signals With Unknown Frequencies, Shaohui Jia

Doctoral Dissertations

This dissertation addresses optimally estimating the amplitudes of superimposed sinusoidal signals with unknown frequencies. The Cramer-Rao Bound of estimating the amplitudes in white Gaussian noise is given, and the maximum likelihood estimator of the amplitudes in this case is shown to be asymptotically efficient at high signal to noise ratio but finite sample size. Applying the theoretical results to signal resolutions, it is shown that the optimal resolution of multiple signals using a finite sample is given by the maximum likelihood estimator of the amplitudes of signals.


Representations, Approximations, And Algorithms For Mathematical Speech Processing, Laura R. Suzuki Jun 1998

Representations, Approximations, And Algorithms For Mathematical Speech Processing, Laura R. Suzuki

Theses and Dissertations

Representing speech signals such that specific characteristics of speech are included is essential in many Air Force and DoD signal processing applications. A mathematical construct called a frame is presented which captures the important time-varying characteristic of speech. Roughly speaking, frames generalize the idea of an orthogonal basis in a Hilbert space, Specific spaces applicable to speech are L2(R) and the Hardy spaces Hp(D) for p> 1 where D is the unit disk in the complex plane. Results are given for representations in the Hardy spaces involving Carleson's inequalities (and its extensions), …