Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 46

Full-Text Articles in Engineering

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Towards Intelligent Runtime Framework For Distributed Heterogeneous Systems, Polykarpos Thomadakis Aug 2023

Towards Intelligent Runtime Framework For Distributed Heterogeneous Systems, Polykarpos Thomadakis

Computer Science Theses & Dissertations

Scientific applications strive for increased memory and computing performance, requiring massive amounts of data and time to produce results. Applications utilize large-scale, parallel computing platforms with advanced architectures to accommodate their needs. However, developing performance-portable applications for modern, heterogeneous platforms requires lots of effort and expertise in both the application and systems domains. This is more relevant for unstructured applications whose workflow is not statically predictable due to their heavily data-dependent nature. One possible solution for this problem is the introduction of an intelligent Domain-Specific Language (iDSL) that transparently helps to maintain correctness, hides the idiosyncrasies of lowlevel hardware, and …


Towards A Robust Defense: A Multifaceted Approach To The Detection And Mitigation Of Neural Backdoor Attacks Through Feature Space Exploration And Analysis, Liuwan Zhu Aug 2023

Towards A Robust Defense: A Multifaceted Approach To The Detection And Mitigation Of Neural Backdoor Attacks Through Feature Space Exploration And Analysis, Liuwan Zhu

Electrical & Computer Engineering Theses & Dissertations

From voice assistants to self-driving vehicles, machine learning(ML), especially deep learning, revolutionizes the way we work and live, through the wide adoption in a broad range of applications. Unfortunately, this widespread use makes deep learning-based systems a desirable target for cyberattacks, such as generating adversarial examples to fool a deep learning system to make wrong decisions. In particular, many recent studies have revealed that attackers can corrupt the training of a deep learning model, e.g., through data poisoning, or distribute a deep learning model they created with “backdoors” planted, e.g., distributed as part of a software library, so that the …


Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Hard-Real-Time Computing Performance In A Cloud Environment, Alvin Cornelius Murphy Dec 2022

Hard-Real-Time Computing Performance In A Cloud Environment, Alvin Cornelius Murphy

Engineering Management & Systems Engineering Theses & Dissertations

The United States Department of Defense (DoD) is rapidly working with DoD Services to move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industrybased approach for software development. While commercial technologies and approaches provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability of commercial technologies to meet hard-real-time requirements within a surface combat system is unclear. This research establishes technical data to validate the effectiveness and suitability of current commercial technologies to meet the hard-real-time demands of a DoD combat management system. (Moreland Jr., 2013) conducted similar research; however, microservices, containers, and container …


Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan Aug 2022

Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan

Computer Science Theses & Dissertations

In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex …


Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque Aug 2022

Applied Deep Learning: Case Studies In Computer Vision And Natural Language Processing, Md Reshad Ul Hoque

Electrical & Computer Engineering Theses & Dissertations

Deep learning has proved to be successful for many computer vision and natural language processing applications. In this dissertation, three studies have been conducted to show the efficacy of deep learning models for computer vision and natural language processing. In the first study, an efficient deep learning model was proposed for seagrass scar detection in multispectral images which produced robust, accurate scars mappings. In the second study, an arithmetic deep learning model was developed to fuse multi-spectral images collected at different times with different resolutions to generate high-resolution images for downstream tasks including change detection, object detection, and land cover …


Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray Aug 2022

Emotion Detection Using An Ensemble Model Trained With Physiological Signals And Inferred Arousal-Valence States, Matthew Nathanael Gray

Electrical & Computer Engineering Theses & Dissertations

Affective computing is an exciting and transformative field that is gaining in popularity among psychologists, statisticians, and computer scientists. The ability of a machine to infer human emotion and mood, i.e. affective states, has the potential to greatly improve human-machine interaction in our increasingly digital world. In this work, an ensemble model methodology for detecting human emotions across multiple subjects is outlined. The Continuously Annotated Signals of Emotion (CASE) dataset, which is a dataset of physiological signals labeled with discrete emotions from video stimuli as well as subject-reported continuous emotions, arousal and valence, from the circumplex model, is used for …


Adaptive Risk Network Dependency Analysis Of Complex Hierarchical Systems, Katherine L. Smith Aug 2022

Adaptive Risk Network Dependency Analysis Of Complex Hierarchical Systems, Katherine L. Smith

Computational Modeling & Simulation Engineering Theses & Dissertations

Recently the number, variety, and complexity of interconnected systems have been increasing while the resources available to increase resilience of those systems have been decreasing. Therefore, it has become increasingly important to quantify the effects of risks and the resulting disruptions over time as they ripple through networks of systems. This dissertation presents a novel modeling and simulation methodology which quantifies resilience, as impact on performance over time, and risk, as the impact of probabilistic disruptions. This work includes four major contributions over the state-of-the-art which are: (1) cyclic dependencies are captured by separation of performance variables into layers which …


Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci May 2022

Deep Learning Object-Based Detection Of Manufacturing Defects In X-Ray Inspection Imaging, Juan C. Parducci

Mechanical & Aerospace Engineering Theses & Dissertations

Current analysis of manufacturing defects in the production of rims and tires via x-ray inspection at an industry partner’s manufacturing plant requires that a quality control specialist visually inspect radiographic images for defects of varying sizes. For each sample, twelve radiographs are taken within 35 seconds. Some defects are very small in size and difficult to see (e.g., pinholes) whereas others are large and easily identifiable. Implementing this quality control practice across all products in its human-effort driven state is not feasible given the time constraint present for analysis.

This study aims to identify and develop an object detector capable …


Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli May 2022

Development Of Modeling And Simulation Platform For Path-Planning And Control Of Autonomous Underwater Vehicles In Three-Dimensional Spaces, Sai Krishna Abhiram Kondapalli

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and …


Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw May 2022

Machine Learning Classification Of Digitally Modulated Signals, James A. Latshaw

Electrical & Computer Engineering Theses & Dissertations

Automatic classification of digitally modulated signals is a challenging problem that has traditionally been approached using signal processing tools such as log-likelihood algorithms for signal classification or cyclostationary signal analysis. These approaches are computationally intensive and cumbersome in general, and in recent years alternative approaches that use machine learning have been presented in the literature for automatic classification of digitally modulated signals. This thesis studies deep learning approaches for classifying digitally modulated signals that use deep artificial neural networks in conjunction with the canonical representation of digitally modulated signals in terms of in-phase and quadrature components. Specifically, capsule networks are …


Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny May 2022

Data-Driven Framework For Understanding & Modeling Ride-Sourcing Transportation Systems, Bishoy Kelleny

Civil & Environmental Engineering Theses & Dissertations

Ride-sourcing transportation services offered by transportation network companies (TNCs) like Uber and Lyft are disrupting the transportation landscape. The growing demand on these services, along with their potential short and long-term impacts on the environment, society, and infrastructure emphasize the need to further understand the ride-sourcing system. There were no sufficient data to fully understand the system and integrate it within regional multimodal transportation frameworks. This can be attributed to commercial and competition reasons, given the technology-enabled and innovative nature of the system. Recently, in 2019, the City of Chicago the released an extensive and complete ride-sourcing trip-level data for …


Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang Dec 2021

Joint Linear And Nonlinear Computation With Data Encryption For Efficient Privacy-Preserving Deep Learning, Qiao Zhang

Electrical & Computer Engineering Theses & Dissertations

Deep Learning (DL) has shown unrivalled performance in many applications such as image classification, speech recognition, anomalous detection, and business analytics. While end users and enterprises own enormous data, DL talents and computing power are mostly gathered in technology giants having cloud servers. Thus, data owners, i.e., the clients, are motivated to outsource their data, along with computationally-intensive tasks, to the server in order to leverage the server’s abundant computation resources and DL talents for developing cost-effective DL solutions. However, trust is required between the server and the client to finish the computation tasks (e.g., conducting inference for the newly-input …


Feature Extraction And Design In Deep Learning Models, Daniel Perez Apr 2021

Feature Extraction And Design In Deep Learning Models, Daniel Perez

Computational Modeling & Simulation Engineering Theses & Dissertations

The selection and computation of meaningful features is critical for developing good deep learning methods. This dissertation demonstrates how focusing on this process can significantly improve the results of learning-based approaches. Specifically, this dissertation presents a series of different studies in which feature extraction and design was a significant factor for obtaining effective results. The first two studies are a content-based image retrieval system (CBIR) and a seagrass quantification study in which deep learning models were used to extract meaningful high-level features that significantly increased the performance of the approaches. Secondly, a method for change detection is proposed where the …


Cybersecurity Risk Assessment Using Graph Theoretical Anomaly Detection And Machine Learning, Goksel Kucukkaya Apr 2021

Cybersecurity Risk Assessment Using Graph Theoretical Anomaly Detection And Machine Learning, Goksel Kucukkaya

Engineering Management & Systems Engineering Theses & Dissertations

The cyber domain is a great business enabler providing many types of enterprises new opportunities such as scaling up services, obtaining customer insights, identifying end-user profiles, sharing data, and expanding to new communities. However, the cyber domain also comes with its own set of risks. Cybersecurity risk assessment helps enterprises explore these new opportunities and, at the same time, proportionately manage the risks by establishing cyber situational awareness and identifying potential consequences. Anomaly detection is a mechanism to enable situational awareness in the cyber domain. However, anomaly detection also requires one of the most extensive sets of data and features …


Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang Dec 2020

Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang

Computational Modeling & Simulation Engineering Theses & Dissertations

Traffic incident analysis is a crucial task in traffic management centers (TMCs) that typically manage many highways with limited staff and resources. An effective automatic incident analysis approach that can report abnormal events timely and accurately will benefit TMCs in optimizing the use of limited incident response and management resources. During the past decades, significant efforts have been made by researchers towards the development of data-driven approaches for incident analysis. Nevertheless, many developed approaches have shown limited success in the field. This is largely attributed to the long detection time (i.e., waiting for overwhelmed upstream detection stations; meanwhile, downstream stations …


Deep Learning For Remote Sensing Image Processing, Yan Lu Aug 2020

Deep Learning For Remote Sensing Image Processing, Yan Lu

Computational Modeling & Simulation Engineering Theses & Dissertations

Remote sensing images have many applications such as ground object detection, environmental change monitoring, urban growth monitoring and natural disaster damage assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. Both spatial and temporal resolutions of satellite images have improved consistently in recent years and provided opportunities in resolving fine details on the Earth's surface. In the past decade, deep learning techniques have revolutionized many applications in the field of computer vision but have not fully been explored in remote sensing image processing. In this dissertation, several state-of-the-art deep learning models have been …


Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Dissertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers can …


Deep Cellular Recurrent Neural Architecture For Efficient Multidimensional Time-Series Data Processing, Lasitha S. Vidyaratne Apr 2020

Deep Cellular Recurrent Neural Architecture For Efficient Multidimensional Time-Series Data Processing, Lasitha S. Vidyaratne

Electrical & Computer Engineering Theses & Dissertations

Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in …


Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin Apr 2020

Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin

Civil & Environmental Engineering Theses & Dissertations

Classification of vehicles into distinct groups is critical for many applications, including freight and commodity flow modeling, pavement management and design, tolling, air quality monitoring, and intelligent transportation systems. The Federal Highway Administration (FHWA) developed a standardized 13-category vehicle classification ruleset, which meets the needs of many traffic data user applications. However, some applications need high-resolution data for modeling and analysis. For example, the type of commodity being carried must be known in the freight modeling framework. Unfortunately, this information is not available at the state or metropolitan level, or it is expensive to obtain from current resources.

Nevertheless, using …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Using Feature Extraction From Deep Convolutional Neural Networks For Pathological Image Analysis And Its Visual Interpretability, Wei-Wen Hsu Jul 2019

Using Feature Extraction From Deep Convolutional Neural Networks For Pathological Image Analysis And Its Visual Interpretability, Wei-Wen Hsu

Electrical & Computer Engineering Theses & Dissertations

This dissertation presents a computer-aided diagnosis (CAD) system using deep learning approaches for lesion detection and classification on whole-slide images (WSIs) with breast cancer. The deep features being distinguishing in classification from the convolutional neural networks (CNN) are demonstrated in this study to provide comprehensive interpretability for the proposed CAD system using the domain knowledge in pathology. In the experiment, a total of 186 slides of WSIs were collected and classified into three categories: Non-Carcinoma, Ductal Carcinoma in Situ (DCIS), and Invasive Ductal Carcinoma (IDC). Instead of conducting pixel-wise classification (segmentation) into three classes directly, a hierarchical framework with the …


Developing Algorithms To Detect Incidents On Freeways From Loop Detector And Vehicle Re-Identification Data, Biraj Adhikari Jul 2019

Developing Algorithms To Detect Incidents On Freeways From Loop Detector And Vehicle Re-Identification Data, Biraj Adhikari

Civil & Environmental Engineering Theses & Dissertations

A new approach for testing incident detection algorithms has been developed and is presented in this thesis. Two new algorithms were developed and tested taking California #7, which is the most widely used algorithm to date, and SVM (Support Vector Machine), which is considered one of the best performing classifiers, as the baseline for comparisons. Algorithm #B in this study uses data from Vehicle Re-Identification whereas the other three algorithms (California #7, SVM and Algorithm #A) use data from a double loop detector for detection of an incident. A microscopic traffic simulator is used for modeling three types of incident …


Variable Speed Limit Control At Sag Curves Through Connected Vehicles: Implications Of Alternative Communications And Sensing Technologies, Reza Vatani Nezafat Apr 2019

Variable Speed Limit Control At Sag Curves Through Connected Vehicles: Implications Of Alternative Communications And Sensing Technologies, Reza Vatani Nezafat

Civil & Environmental Engineering Theses & Dissertations

Connected vehicles (CVs) will enable new applications to improve traffic flow. This study’s focus is to investigate how potential implementation of variable speed limit (VSL) through different types of communication and sensing technologies on CVs may improve traffic flow at a sag curve. At sag curves, the gradient changes from negative to positive values which causes a reduction in the roadway capacity and congestion. A VSL algorithm is developed and implemented in a simulation environment for controlling the inflow of vehicles to a sag curve on a freeway to minimize delays and increase throughput. Both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) …


Development And Initial Evaluation Of A Reinforced Cue Detection Model To Assess Situation Awareness In Commercial Aircraft Cockpits, Aysen K. Taylor Apr 2019

Development And Initial Evaluation Of A Reinforced Cue Detection Model To Assess Situation Awareness In Commercial Aircraft Cockpits, Aysen K. Taylor

Engineering Management & Systems Engineering Theses & Dissertations

Commercial transport aircraft of today vary greatly from early aircraft with regards to how the aircraft are controlled and the feedback provided from the machine to the human operator. Over time, as avionics systems became more automated, pilots had less direct control over their aircraft. Much research exists in the literature about automation issues, and several major accidents over the last twenty years spurred interest about how to maintain the benefits of automation while improving the overall human-machine interaction as the pilot is considered the last line of defense.

An important reason for maintaining or even improving overall pilot situation …


A Data-Driven Approach For Modeling Agents, Hamdi Kavak Apr 2019

A Data-Driven Approach For Modeling Agents, Hamdi Kavak

Computational Modeling & Simulation Engineering Theses & Dissertations

Agents are commonly created on a set of simple rules driven by theories, hypotheses, and assumptions. Such modeling premise has limited use of real-world data and is challenged when modeling real-world systems due to the lack of empirical grounding. Simultaneously, the last decade has witnessed the production and availability of large-scale data from various sensors that carry behavioral signals. These data sources have the potential to change the way we create agent-based models; from simple rules to driven by data. Despite this opportunity, the literature has neglected to offer a modeling approach to generate granular agent behaviors from data, creating …


Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan Jul 2018

Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system …


Non-Destructive Evaluation For Composite Material, Desalegn Temesgen Delelegn Jul 2018

Non-Destructive Evaluation For Composite Material, Desalegn Temesgen Delelegn

Electrical & Computer Engineering Theses & Dissertations

The Nondestructive Evaluation Sciences Branch (NESB) at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has conducted impact damage experiments over the past few years with the goal of understanding structural defects in composite materials. The Data Science Team within the NASA LaRC Office of the Chief Information Officer (OCIO) has been working with the Non-Destructive Evaluation (NDE) subject matter experts (SMEs), Dr. Cheryl Rose, from the Structural Mechanics & Concepts Branch and Dr. William Winfree, from the Research Directorate, to develop computer vision solutions using digital image processing and machine learning techniques that can help identify …


Design And Implementation Of An Artificial Neural Network Controller For Quadrotor Flight In Confined Environment, Ahmed Mekky Apr 2018

Design And Implementation Of An Artificial Neural Network Controller For Quadrotor Flight In Confined Environment, Ahmed Mekky

Mechanical & Aerospace Engineering Theses & Dissertations

Quadrotors offer practical solutions for many applications, such as emergency rescue, surveillance, military operations, videography and many more. For this reason, they have recently attracted the attention of research and industry. Even though they have been intensively studied, quadrotors still suffer from some challenges that limit their use, such as trajectory measurement, attitude estimation, obstacle avoidance, safety precautions, and land cybersecurity. One major problem is flying in a confined environment, such as closed buildings and tunnels, where the aerodynamics around the quadrotor are affected by close proximity objects, which result in tracking performance deterioration, and sometimes instability. To address this …