Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 243

Full-Text Articles in Engineering

Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi May 2021

Data Forgery Detection In Automatic Generation Control: Exploration Of Automated Parameter Generation And Low-Rate Attacks, Yatish R. Dubasi

Computer Science and Computer Engineering Undergraduate Honors Theses

Automatic Generation Control (AGC) is a key control system utilized in electric power systems. AGC uses frequency and tie-line power flow measurements to determine the Area Control Error (ACE). ACE is then used by the AGC to adjust power generation and maintain an acceptable power system frequency. Attackers might inject false frequency and/or tie-line power flow measurements to mislead AGC into falsely adjusting power generation, which can harm power system operations. Various data forgery detection models are studied in this thesis. First, to make the use of predictive detection models easier for users, we propose a method for automated ...


Dynamic Task Allocation In Partially Defined Environments Using A* With Bounded Costs, James Hendrickson May 2021

Dynamic Task Allocation In Partially Defined Environments Using A* With Bounded Costs, James Hendrickson

PhD Dissertations and Master's Theses

The sector of maritime robotics has seen a boom in operations in areas such as surveying and mapping, clean-up, inspections, search and rescue, law enforcement, and national defense. As this sector has continued to grow, there has been an increased need for single unmanned systems to be able to undertake more complex and greater numbers of tasks. As the maritime domain can be particularly difficult for autonomous vehicles to operate in due to the partially defined nature of the environment, it is crucial that a method exists which is capable of dynamically accomplishing tasks within this operational domain. By considering ...


Perceptually Improved Medical Image Translations Using Conditional Generative Adversarial Networks, Anurag Vaidya, Joshua Stough, Aalpen Patel, Benjamin Wheatley, Dan Cavanagh Jan 2021

Perceptually Improved Medical Image Translations Using Conditional Generative Adversarial Networks, Anurag Vaidya, Joshua Stough, Aalpen Patel, Benjamin Wheatley, Dan Cavanagh

Honors Theses

Magnetic resonance imaging (MRI) can help visualize various brain regions. Typical MRI sequences consist of T1-weighted sequence (favorable for observing large brain structures), T2-weighted sequence (useful for pathology), and T2-FLAIR scan (useful for pathology with suppression of signal from water). While these different scans provide complementary information, acquiring them leads to acquisition times of ~1 hour and an average cost of $2,600, presenting significant barriers. To reduce these costs associated with brain MRIs, we present pTransGAN, a generative adversarial network capable of translating both healthy and unhealthy T1 scans into T2 scans. We show that the addition of non-adversarial ...


A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek Dec 2020

A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek

Dissertations

The introduction of deep learning and big data analytics may significantly elevate the performance of traffic speed prediction. Work zones become one of the most critical factors causing congestion impact, which reduces the mobility as well as traffic safety. A comprehensive literature review on existing work zone delay prediction models (i.e., parametric, simulation and non-parametric models) is conducted in this research. The research shows the limitations of each model. Moreover, most previous modeling approaches did not consider user delay for connected freeways when predicting traffic speed under work zone conditions. This research proposes Deep Artificial Neural Network (Deep ANN ...


A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad Aug 2020

A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad

Civil and Environmental Engineering Theses and Dissertations

Studying the growth pattern of cities/urban areas has received considerable attention during the past few decades. The goal is to identify directions and locations of potential growth, assess infrastructure and public service requirements, and ensure the integration of the new developments with the existing city structure. This dissertation presents a novel model for urban growth prediction using a novel machine learning model. The model treats successive historical satellite images of the urban area under consideration as a video for which future frames are predicted. A time-dependent convolutional encoder-decoder architecture is adopted. The model considers as an input a satellite ...


Application Of Artificial Intelligence And Geographic Information System For Developing Automated Walkability Score, Md Mehedi Hasan Aug 2020

Application Of Artificial Intelligence And Geographic Information System For Developing Automated Walkability Score, Md Mehedi Hasan

Dissertations

Walking is considered as one of the major modes of active transportation, which contributes to the livability of cities. It is highly important to ensure walk friendly sidewalks to promote human physical activities along roads. Over the last two decades, different walk scores were estimated in respect to walkability measures by applying different methods and approaches. However, in the era of big data and machine learning revolution, there is still a gap to measure the composite walkability score in an automated way by applying and quantifying the activityfriendliness of walkable streets. In this study, a street-level automated walkability score was ...


An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez Aug 2020

An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Large amounts of data is being generated constantly each day, so much data that it is difficult to find patterns in order to predict outcomes and make decisions for both humans and machines alike. It would be useful if this data could be simplified using machine learning techniques. For example, biological cell identity is dependent on many factors tied to genetic processes. Such factors include proteins, gene transcription, and gene methylation. Each of these factors are highly complex mechanism with immense amounts of data. Simplifying these can then be helpful in finding patterns in them. Error-Correcting Output Codes (ECOC) does ...


Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Disssertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers ...


Deep Learning For Remote Sensing Image Processing, Yan Lu Aug 2020

Deep Learning For Remote Sensing Image Processing, Yan Lu

Computational Modeling and Simulation Engineering Theses & Dissertations

Remote sensing images have many applications such as ground object detection, environmental change monitoring, urban growth monitoring and natural disaster damage assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. Both spatial and temporal resolutions of satellite images have improved consistently in recent years and provided opportunities in resolving fine details on the Earth's surface. In the past decade, deep learning techniques have revolutionized many applications in the field of computer vision but have not fully been explored in remote sensing image processing. In this dissertation, several state-of-the-art deep learning models have ...


Optimized Machine Learning Models Towards Intelligent Systems, Mohammadnoor Ahmad Mohammad Injadat Jul 2020

Optimized Machine Learning Models Towards Intelligent Systems, Mohammadnoor Ahmad Mohammad Injadat

Electronic Thesis and Dissertation Repository

The rapid growth of the Internet and related technologies has led to the collection of large amounts of data by individuals, organizations, and society in general [1]. However, this often leads to information overload which occurs when the amount of input (e.g. data) a human is trying to process exceeds their cognitive capacities [2]. Machine learning (ML) has been proposed as one potential methodology capable of extracting useful information from large sets of data [1]. This thesis focuses on two applications. The first is education, namely e-Learning environments. Within this field, this thesis proposes different optimized ML ensemble models ...


Nonlinear Dimensionality Reduction For The Thermodynamics Of Small Clusters Of Particles, Aditya Dendukuri Jul 2020

Nonlinear Dimensionality Reduction For The Thermodynamics Of Small Clusters Of Particles, Aditya Dendukuri

Theses and Dissertations

This work employs tools and methods from computer science to study clusters comprising a small number N of interacting particles, which are of interest in science, engineering, and nanotechnology. Specifically, the thermodynamics of such clusters is studied using techniques from spectral graph theory (SGT) and machine learning (ML). SGT is used to define the structure of the clusters and ML is used on ensembles of cluster configurations to detect state variables that can be used to model the thermodynamic properties of the system. While the most fundamental description of a cluster is in 3N dimensions, i.e., the Cartesian coordinates ...


Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery Jun 2020

Monte Carlo Tree Search Applied To A Modified Pursuit/Evasion Scotland Yard Game With Rendezvous Spaceflight Operation Applications, Joshua A. Daughtery

Theses and Dissertations

This thesis takes the Scotland Yard board game and modifies its rules to mimic important aspects of space in order to facilitate the creation of artificial intelligence for space asset pursuit/evasion scenarios. Space has become a physical warfighting domain. To combat threats, an understanding of the tactics, techniques, and procedures must be captured and studied. Games and simulations are effective tools to capture data lacking historical context. Artificial intelligence and machine learning models can use simulations to develop proper defensive and offensive tactics, techniques, and procedures capable of protecting systems against potential threats. Monte Carlo Tree Search is a ...


Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu May 2020

Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu

Dissertations

The human brain, with its massive computational capability and power efficiency in small form factor, continues to inspire the ultimate goal of building machines that can perform tasks without being explicitly programmed. In an effort to mimic the natural information processing paradigms observed in the brain, several neural network generations have been proposed over the years. Among the neural networks inspired by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use memoryless neuron models and have shown unprecedented success surpassing humans in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks (SNNs) closely mimic biological neurons by ...


Model-Based Deep Siamese Autoencoder For Clustering Single Cell Rna-Seq Data, Zixia Meng May 2020

Model-Based Deep Siamese Autoencoder For Clustering Single Cell Rna-Seq Data, Zixia Meng

Theses

In the biological field, the smallest unit of organisms in most biological systems is the single cell, and the classification of cells is an everlasting problem. A central task for analysis of single-cell RNA-seq data is to identify and characterize novel cell types. Currently, there are several classical methods, such as K-means algorithm, spectral clustering, and Gaussian Mixture Models (GMMs), which are widely used to cluster the cells. Furthermore, typical dimensional reduction methods such as PCA, t-SNE, and ZIDA have been introduced to overcome “the curse of dimensionality”. A more recent method scDeepCluster has demonstrated improved and promising performances in ...


Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh May 2020

Edge-Cloud Iot Data Analytics: Intelligence At The Edge With Deep Learning, Ananda Mohon M. Ghosh

Electronic Thesis and Dissertation Repository

Rapid growth in numbers of connected devices, including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power and thus is not well suited for ...


Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgey (Mars), Jeremiah Sanders May 2020

Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgey (Mars), Jeremiah Sanders

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Prostate cancer is the second most common cancer in men and the second-leading cause of cancer death in men. Brachytherapy is a highly effective treatment option for prostate cancer, and is the most cost-effective initial treatment among all other therapeutic options for low to intermediate risk patients of prostate cancer. In low-dose-rate (LDR) brachytherapy, verifying the location of the radioactive seeds within the prostate and in relation to critical normal structures after seed implantation is essential to ensuring positive treatment outcomes.

One current gap in knowledge is how to simultaneously image the prostate, surrounding anatomy, and radioactive seeds within the ...


A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu May 2020

A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The vast majority of advances in deep neural network research operate on the basis of a real-valued weight space. Recent work in alternative spaces have challenged and complemented this idea; for instance, the use of complex- or binary-valued weights have yielded promising and fascinating results. We propose a framework for a novel weight space consisting of vector values which we christen VectorNet. We first develop the theoretical foundations of our proposed approach, including formalizing the requisite theory for forward and backpropagating values in a vector-weighted layer. We also introduce the concept of expansion and aggregation functions for conversion between real ...


A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz May 2020

A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz

Computer Science and Computer Engineering Undergraduate Honors Theses

Effective monitoring of adherence to at-home exercise programs as prescribed by physiotherapy protocols is essential to promoting effective rehabilitation and therapeutic interventions. Currently physical therapists and other health professionals have no reliable means of tracking patients' progress in or adherence to a prescribed regimen. This project aims to develop a low-cost, privacy-conserving means of monitoring at-home exercise activity using a gym mat equipped with an array of capacitive sensors. The ability of the mat to classify different types of exercises was evaluated using several machine learning models trained on an existing dataset of physiotherapy exercises.


Early Warning Solar Storm Prediction, Ian D. Lumsden, Marvin Joshi, Matthew Smalley, Aiden Rutter, Ben Klein May 2020

Early Warning Solar Storm Prediction, Ian D. Lumsden, Marvin Joshi, Matthew Smalley, Aiden Rutter, Ben Klein

Chancellor’s Honors Program Projects

No abstract provided.


Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim May 2020

Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim

Engineering and Applied Science Theses & Dissertations

Electronic Health Records (EHR) are widely adopted and used throughout healthcare systems and are able to collect and store longitudinal information data that can be used to describe patient phenotypes. From the underlying data structures used in the EHR, discrete data can be extracted and analyzed to improve patient care and outcomes via tasks such as risk stratification and prospective disease management. Temporality in EHR is innately present given the nature of these data, however, and traditional classification models are limited in this context by the cross- sectional nature of training and prediction processes. Finding temporal patterns in EHR is ...


Learning & Planning For Self-Driving Ride-Hailing Fleets, Jack Morris May 2020

Learning & Planning For Self-Driving Ride-Hailing Fleets, Jack Morris

Undergraduate Honors Theses

Through simulation, we demonstrate that incorporation of self-driving vehicles into ride-hailing fleets can greatly improve urban mobility. After modeling existing driver-rider matching algorithms including Uber’s Batched Matching and Didi Chuxing’s Learning and Planning approach, we develop a novel algorithm adapting the latter to a fleet of Autos – self-driving ride-hailing vehicles – and Garages – specialized hubs for storage and refueling. By compiling driver-rider matching, idling, storage, refueling, and redistribution decisions in one unifying framework, we enable a system-wide optimization approach for self-driving ride-hailing previously unseen in the literature. In contrast with existing literature that labeled driverless taxis as economically infeasible ...


Gait Characterization Using Computer Vision Video Analysis, Martha T. Gizaw May 2020

Gait Characterization Using Computer Vision Video Analysis, Martha T. Gizaw

Undergraduate Honors Theses

The World Health Organization reports that falls are the second-leading cause of accidental death among senior adults around the world. Currently, a research team at William & Mary’s Department of Kinesiology & Health Sciences attempts to recognize and correct aging-related factors that can result in falling. To meet this goal, the members of that team videotape walking tests to examine individual gait parameters of older subjects. However, they undergo a slow, laborious process of analyzing video frame by video frame to obtain such parameters. This project uses computer vision software to reconstruct walking models from residents of an independent living retirement ...


Functional Object-Oriented Network: A Knowledge Representation For Service Robotics, David Andrés Paulius Ramos Mar 2020

Functional Object-Oriented Network: A Knowledge Representation For Service Robotics, David Andrés Paulius Ramos

Graduate Theses and Dissertations

In this dissertation, we discuss our work behind the development of the functional object-oriented network (abbreviated as FOON), a graphical knowledge representation for robotic manipulation and understanding of its own actions and (potentially) the intentions of humans in the household. Based on the theory of affordance, this representation captures manipulations and their effects on actions through the coupling of object and motion nodes as fundamental learning units known as functional units. The activities currently represented in FOON are cooking related, but this representation can be extended to other activities that involve manipulation of objects which result in observable changes of ...


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose ...


Extracting Range Data From Images Using Focus Error, Erik M. Madden Mar 2020

Extracting Range Data From Images Using Focus Error, Erik M. Madden

Theses and Dissertations

Air-to-air refueling (AAR) has become a staple when performing long missions with aircraft. With modern technology, however, people have begun to research how to perform this task autonomously. Automated air-to-air refueling (A3R) is this exact concept. Combining many different systems, the idea is to allow computers on the aircraft to link up via the refueling boom, refuel, and detach before resuming pilot control. This document lays out one of the systems that is needed to perform A3R, namely, the system that extracts range data. While stereo cameras perform such tasks, there is interest in finding other ways of accomplishing the ...


Pedestrian Navigation Using Artificial Neural Networks And Classical Filtering Techniques, David J. Ellis Mar 2020

Pedestrian Navigation Using Artificial Neural Networks And Classical Filtering Techniques, David J. Ellis

Theses and Dissertations

The objective of this thesis is to explore the improvements achieved through using classical filtering methods with Artificial Neural Network (ANN) for pedestrian navigation techniques. ANN have been improving dramatically in their ability to approximate various functions. These neural network solutions have been able to surpass many classical navigation techniques. However, research using ANN to solve problems appears to be solely focused on the ability of neural networks alone. The combination of ANN with classical filtering methods has the potential to bring beneficial aspects of both techniques to increase accuracy in many different applications. Pedestrian navigation is used as a ...


Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé Mar 2020

Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé

Theses and Dissertations

A holistic approach to the algorithm selection problem is presented. The “algorithm selection framework" uses a combination of user input and meta-data to streamline the algorithm selection for any data analysis task. The framework removes the conjecture of the common trial and error strategy and generates a preference ranked list of recommended analysis techniques. The framework is performed on nine analysis problems. Each of the recommended analysis techniques are implemented on the corresponding data sets. Algorithm performance is assessed using the primary metric of recall and the secondary metric of run time. In six of the problems, the recall of ...


A Visual Analytics System For Making Sense Of Real-Time Twitter Streams, Amir Haghighatimaleki Jan 2020

A Visual Analytics System For Making Sense Of Real-Time Twitter Streams, Amir Haghighatimaleki

Electronic Thesis and Dissertation Repository

Through social media platforms, massive amounts of data are being produced. Twitter, as one such platform, enables users to post “tweets” on an unprecedented scale. Once analyzed by machine learning (ML) techniques and in aggregate, Twitter data can be an invaluable resource for gaining insight. However, when applied to real-time data streams, due to covariate shifts in the data (i.e., changes in the distributions of the inputs of ML algorithms), existing ML approaches result in different types of biases and provide uncertain outputs. This thesis describes a visual analytics system (i.e., a tool that combines data visualization, human-data ...


Compound Vision Approach For Autonomous Vehicles Navigation, Michael Mikhael Jan 2020

Compound Vision Approach For Autonomous Vehicles Navigation, Michael Mikhael

Open Access Theses & Dissertations

An analogy can be made between the sensing that occurs in simple robots and drones and that in insects and crustaceans, especially in basic navigation requirements. Thus, an approach in robots/drones based on compound eye vision could be useful. In this research, several image processing algorithms were used to detect and track moving objects starting with images upon which a grid (compound eye image) was superimposed, including contours detection, the second moments of those contours along with the grid applied to the original image, and Fourier Transforms and inverse Fourier Transforms. The latter also provide information about scene or ...


Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic Jan 2020

Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic

Theses and Dissertations--Computer Science

Understanding free-flow speed is fundamental to transportation engineering in order to improve traffic flow, control, and planning. The free-flow speed of a road segment is the average speed of automobiles unaffected by traffic congestion or delay. Collecting speed data across a state is both expensive and time consuming. Some approaches have been presented to estimate speed using geometric road features for certain types of roads in limited environments. However, estimating speed at state scale for varying landscapes, environments, and road qualities has been relegated to manual engineering and expensive sensor networks. This thesis proposes an automated approach for estimating free-flow ...