Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti Dec 2019

Liver Cancer: Current And Future Trends Using Biomaterials, Sue Anne Chew, Stefania Moscato, Sachin George, Bahareh Azimi, Serena Danti

Health & Biomedical Sciences Faculty Publications and Presentations

Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools …


Fabrication And Imaging Characterization Of Poly (Dimethyl Siloxane)/Sic Nano-Fillers Samples As Model Biomaterials, Tetiana Soloviova, Viorica Gutu, Zoya Vinokur, Akm S. Rahman, Subhendra Sarkar Dec 2019

Fabrication And Imaging Characterization Of Poly (Dimethyl Siloxane)/Sic Nano-Fillers Samples As Model Biomaterials, Tetiana Soloviova, Viorica Gutu, Zoya Vinokur, Akm S. Rahman, Subhendra Sarkar

Publications and Research

Biopolymers are being developed with embedded nanostructures for in vivo drug delivery to treat various diseases including cancers. In the current project we developed fabrication steps to prepare two biopolymers, poly di-methoxy siloxane (PDMS) with 0-0.9 vol% of SiC nano whisker (fillers) followed by non- destructive characterization. Optical reflection microscopy (5-100X) was performed to ensure loading and distribution of increasing SiC content. Optical microscopy showed progressively higher SiC distribution as filler loading was increased from 0-0.9 vol%. X-ray imaging at low kV (kilovoltage) and low mAs (milliamperage per second) were optimized to allow distinction between filled PDMS with SiC concentration …


Multidirectional Pin-On-Disk Testing Device To Evaluate The Cross-Shear Effect On The Wear Of Biocompatible Materials, Vicente Cortes, Carlos A. Rodriguez Betancourth, Javier A. Ortega, Hasina Huq Jul 2019

Multidirectional Pin-On-Disk Testing Device To Evaluate The Cross-Shear Effect On The Wear Of Biocompatible Materials, Vicente Cortes, Carlos A. Rodriguez Betancourth, Javier A. Ortega, Hasina Huq

Mechanical Engineering Faculty Publications and Presentations

One of the main causes of hip prostheses failure is the premature wear of their components. Multi-directional motion or “cross-shear” motion has been identified as one of the most significant factors affecting the wear rate of UHMWPE in total hip joint replacement prostheses. To better evaluate the effect of this cross-shear motion on the tribological behavior of different biomaterials, a new wear testing device has been designed and developed. This new instrument is capable to reproduce the “cross-shear” effect with bidirectional motion on bearing materials and to determine coefficient of friction (COF) between surfaces during testing. To validate the functionality …


Forcespinning Technique For The Production Of Poly(D,L-Lactic Acid) Submicrometer Fibers: Process–Morphology–Properties Relationship, Victoria Padilla-Gainza, Graciela Morales, Heriberto Rodríguez-Tobías, Karen Lozano Feb 2019

Forcespinning Technique For The Production Of Poly(D,L-Lactic Acid) Submicrometer Fibers: Process–Morphology–Properties Relationship, Victoria Padilla-Gainza, Graciela Morales, Heriberto Rodríguez-Tobías, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

This work addresses a systematic study for the process development and optimization of poly(d,l-lactic acid) (PDLLA) submicrometer fibers utilizing the centrifugal spinning technique known as Forcespinning. This study analyzes the effect of polymer concentration (8, 10, and 12 wt %) and angular speed on the fiber morphology, diameter distribution, and fiber yield. The increase in polymer concentration and angular speed favored the formation of continuous and homogeneous submicrometer fibers with an absence of bead formation and higher output. The optimal conditions were established considering the morphological characteristics that exhibit a greater surface area (homogeneous and submicrometer fibers); and they were …


Biomaterial Substrate Modifications That Influence Cell-Material Interactions To Prime Cellular Responses To Nonviral Gene Delivery, Amy Mantz, Angela K. Pannier Feb 2019

Biomaterial Substrate Modifications That Influence Cell-Material Interactions To Prime Cellular Responses To Nonviral Gene Delivery, Amy Mantz, Angela K. Pannier

Department of Biological Systems Engineering: Papers and Publications

Gene delivery is the transfer of exogenous genetic material into somatic cells to modify their gene expression, with applications including tissue engineering, regenerative medicine, sensors and diagnostics, and gene therapy. Viral vectors are considered the most effective system to deliver nucleic acids, yet safety concerns and many other disadvantages have resulted in investigations into an alternative option, i.e. nonviral gene delivery. Chemical nonviral gene delivery is typically accomplished by electrostatically complexing cationic lipids or polymers with negatively charged nucleic acids. Unfortunately, nonviral gene delivery suffers from low efficiency due to barriers that impede transfection success, including intracellular processes such as …