Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2017

Modeling

Discipline
Institution
Publication

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Ncer Assistance Agreement Annual Progress Report For Grant #83582401 - Assessment Of Stormwater Harvesting Via Manage Aquifer Recharge (Mar) To Develop New Water Supplies In The Arid West: The Salt Lake Valley Example, Ryan Dupont, Joan E. Mclean, Richard C. Peralta, Sarah E. Null, Douglas B. Jackson-Smith Nov 2017

Ncer Assistance Agreement Annual Progress Report For Grant #83582401 - Assessment Of Stormwater Harvesting Via Manage Aquifer Recharge (Mar) To Develop New Water Supplies In The Arid West: The Salt Lake Valley Example, Ryan Dupont, Joan E. Mclean, Richard C. Peralta, Sarah E. Null, Douglas B. Jackson-Smith

Civil and Environmental Engineering Faculty Publications

The aims of the original proposed project remain the same, that is, to test the hypothesis that Managed Aquifer Recharge (MAR) for stormwater harvesting is a technically feasible, socially and environmentally acceptable, economically viable, and legally feasible option for developing new water supplies for arid Western urban ecosystems experiencing increasing population, and climate change pressures on existing water resources. The project is being carried out via three distinct but integrated components that include: 1) Monitoring of existing distributed MAR harvesting schemes involving a growing number of demonstration Green Infrastructure (GI) test sites; 2) Integrated stormwater/vadose zone/groundwater/ ecosystem services modeling; and …


Modeling And Simulation Of Microgrid, Ahmad Alzahrani, Mehdi Ferdowsi, Pourya Shamsi, Cihan H. Dagli Nov 2017

Modeling And Simulation Of Microgrid, Ahmad Alzahrani, Mehdi Ferdowsi, Pourya Shamsi, Cihan H. Dagli

Electrical and Computer Engineering Faculty Research & Creative Works

Complex computer systems and electric power grids share many properties of how they behave and how they are structured. A microgrid is a smaller electric grid that contains several homes, energy storage units, and distributed generators. The main idea behind microgrids is the ability to work even if the main grid is not supplying power. That is, the energy storage unit and distributed generation will supply power in that case, and if there is excess in power production from renewable energy sources, it will go to the energy storage unit. Therefore, the electric grid becomes decentralized in terms of control …


A Picture Is Worth A Thousand Roads, Keith Pierce Oct 2017

A Picture Is Worth A Thousand Roads, Keith Pierce

News Items

No abstract provided.


Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer Oct 2017

Event And Time-Triggered Control Module Layers For Individual Robot Control Architectures Of Unmanned Agricultural Ground Vehicles, Tyler Troyer

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Automation in the agriculture sector has increased to an extent where the accompanying methods for unmanned field management are becoming more economically viable. This manifests in the industry’s recent presentation of conceptual cab-less machines that perform all field operations under the high-level task control of a single remote operator. A dramatic change in the overall workflow for field tasks that historically assumed the presence of a human in the immediate vicinity of the work is predicted. This shift in the entire approach to farm machinery work provides producers increased control and productivity over high-level tasks and less distraction from operating …


Bioprocess Intensification And Optimisation Using Macroscopic Predictive Models Of Cell Culture Processes, Bassem Ben Yahia, Boris Fessler, Gwendal Gränicher, An-Vy Tran, Mareike Harmsen, Elmar Heinzle Sep 2017

Bioprocess Intensification And Optimisation Using Macroscopic Predictive Models Of Cell Culture Processes, Bassem Ben Yahia, Boris Fessler, Gwendal Gränicher, An-Vy Tran, Mareike Harmsen, Elmar Heinzle

Integrated Continuous Biomanufacturing III

Chinese Ovary Hamster (CHO) are an indispensable tool for biotechnological production of biologics which is a multi-million business. Recently, the pharmaceutical industry is increasingly focusing in the use of perfusion mode. Nevertheless, the optimal perfusion rate during biopharmaceutical perfusion production is dependent on cell metabolism which can be characterized by mathematical models. This study provides insights into the predictive capacities of systematic and simple cell modeling approaches of metabolism, growth and production of monoclonal antibodies (mAb) [1] to optimized medium composition and perfusion rate during CHO perfusion culture. We applied the metabolic steady state concept and used a segmented linear …


Bioprocess Intensification And Optimisation Using Macroscopic Predictive Models Of Cell Culture Processes, Bassem Ben Yahia, Mareike Harmsen, An-Vy Tran, Gwendal Gränicher, Boris Fessler, Elmar Heinzle Sep 2017

Bioprocess Intensification And Optimisation Using Macroscopic Predictive Models Of Cell Culture Processes, Bassem Ben Yahia, Mareike Harmsen, An-Vy Tran, Gwendal Gränicher, Boris Fessler, Elmar Heinzle

Integrated Continuous Biomanufacturing III

CHO cells, modeling, perfusion, ATF, segmented linear model


Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock Aug 2017

Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock

Biosystems and Agricultural Engineering Faculty Publications

The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass‐balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic …


An Operationalized Model For Defining Computational Thinking, Tony A. Lowe, Sean B. Brophy Jul 2017

An Operationalized Model For Defining Computational Thinking, Tony A. Lowe, Sean B. Brophy

School of Engineering Education Graduate Student Series

The Computational Thinking (CT) conceptual framework is entering its second decade of research yet still lacks a cohesive definition by which the field can coalesce. The lack of clear definition makes assessment tool challenging to formulate, pedagogical efforts difficult to compare, and research difficult to synthesize. This paper looks to operationalize differing definitions of CT enhancing the ability to teach then assess the presence of CT. Expanding upon CT definitions, industry practices and processes, and educational theory, we link existing concepts and propose a new element to model an active definition of CT as a theoretical framework to guide future …


The Soil Moisture Velocity Equation, Fred L. Ogden, Myron B. Allen, Wencong Lai, Jianting Zhu, Mookwon Seo, Craig C. Douglas, Cary A. Talbot Jun 2017

The Soil Moisture Velocity Equation, Fred L. Ogden, Myron B. Allen, Wencong Lai, Jianting Zhu, Mookwon Seo, Craig C. Douglas, Cary A. Talbot

Publications

Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for …


Ls-Dyna® Modeling Enhancement Support, John D. Reid, Robert W. Bielenberg, Chaz Ginger Apr 2017

Ls-Dyna® Modeling Enhancement Support, John D. Reid, Robert W. Bielenberg, Chaz Ginger

Nebraska Department of Transportation: Research Reports

The Pooled Fund Program member states provided funding for LS-DYNA modeling enhancements in Years 17 thru 22 (2006-2011), with a project period of 2006-2016. This report documents many of the modeling issues addressed throughout the project period. The funding has been effectively utilized to advance the current state-of-the-art for computer simulation and has provided the following benefits for the entire industry: (1) improved roadside safety hardware, (2) reduced development time and cost, (3) improved understanding of the behavior of roadside safety features, especially for impacts outside of normal crash test conditions, (4) improved LS-DYNA modeling techniques and procedures, and (5) …


The Influence Of Bmss On The Characterization And Modeling Of Series And Parallel Li-Ion Packs, Sandra Castano-Solis, Daniel Serrano-Jimenez, Lucia Gauchia, Javier Sanz Feb 2017

The Influence Of Bmss On The Characterization And Modeling Of Series And Parallel Li-Ion Packs, Sandra Castano-Solis, Daniel Serrano-Jimenez, Lucia Gauchia, Javier Sanz

Michigan Tech Publications

This work analyzes the effects of a BMS (battery management system) on the characterization and modeling of series and parallel connections of Li-ion cell packs. The Li-ion pack studied consists of four series modules connected in parallel. This pack has been characterized by means of charge, discharge and frequency tests. As a result of these tests, series and parallel influence on battery parameters have been determined. A model considering the effects of a BMS is established and compared with a model based on a single-cell approach. Experimental validations show that the single cell based approach gives poor results in comparison …


Real-Time Sensing Of Trust In Human-Machine Interactions, Wan-Lin Hu, Kumar Akash, Neera Jain, Tahira Reid Jan 2017

Real-Time Sensing Of Trust In Human-Machine Interactions, Wan-Lin Hu, Kumar Akash, Neera Jain, Tahira Reid

School of Mechanical Engineering Faculty Publications

Human trust in automation plays an important role in successful interactions between humans and machines. To design intelligent machines that can respond to changes in human trust, real-time sensing of trust level is needed. In this paper, we describe an empirical trust sensor model that maps psychophysiological measurements to human trust level. The use of psychophysiological measurements is motivated by their ability to capture a human's response in real time. An exhaustive feature set is considered, and a rigorous statistical approach is used to determine a reduced set of ten features. Multiple classification methods are considered for mapping the reduced …


Modeling Of Selective Laser Sintering/ Selective Laser Melting, Xuan Wang, Connor West Jan 2017

Modeling Of Selective Laser Sintering/ Selective Laser Melting, Xuan Wang, Connor West

Industrial and Manufacturing Engineering

Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Modeling is a powerful tool to enable faster development cycle by significantly reducing the experimental efforts. In this paper we discussed the current status of selective laser sintering/melting modeling, in which the laser and powder interaction was studied to understand and predict the process and …


Micromechanics-Based Investigation Of Fouled Ballast Using Large-Scale Triaxial Tests And Discrete Element Modeling, Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiatkamjorn Jan 2017

Micromechanics-Based Investigation Of Fouled Ballast Using Large-Scale Triaxial Tests And Discrete Element Modeling, Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiatkamjorn

Faculty of Engineering and Information Sciences - Papers: Part A

Railway ballast comprises unbounded discrete grains that are often used to form a load-bearing platform for tracks. Ballast degradation as trains pass over the tracks and infiltration of external fines including slurried (pumped) fine subgrade soils are two of the main reasons for ballast fouling. Fouling causes tracks to settle and also reduces the load-bearing capacity, which is associated with a reduction in internal friction and increased lateral spreading of the ballast layer. This paper presents a study of mobilized friction angle, volumetric behavior, and associated evolutions of contact and fabric anisotropy of fouled ballast subjected to monotonic triaxial loading …


Water–Soil–Vegetation Dynamic Interactions In Changing Climate, Xixi Wang, Xuefeng Chu, Tingxi Liu, Xiangju Cheng, Rich Whittecar Jan 2017

Water–Soil–Vegetation Dynamic Interactions In Changing Climate, Xixi Wang, Xuefeng Chu, Tingxi Liu, Xiangju Cheng, Rich Whittecar

Civil & Environmental Engineering Faculty Publications

Previous studies of land degradation, topsoil erosion, and hydrologic alteration typically focus on these subjects individually, missing important interrelationships among these important aspects of the Earth's system. However, an understanding of water–soil–vegetation dynamic interactions is needed to develop practical and effective solutions to sustain the globe's eco-environment and grassland agriculture, which depends on grasses, legumes, and other fodder or soil-building crops. This special issue is intended to be a platform for a discussion of the relevant scientific findings based on experimental and/or modeling studies. Its 12 peer-reviewed articles present data, novel analysis/modeling approaches, and convincing results of water–soil–vegetation interactions under …