Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Mechanical properties

Articles 1 - 6 of 6

Full-Text Articles in Engineering

The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou May 2021

The Effect Of Nanostructures In Aluminum Alloys Processed Using Additive Manufacturing On Microstructural Evolution And Mechanical Performance Behavior, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper reviews the status of nanoparticle technology as it relates to the additive manufacturing (AM) of aluminum-based alloys. A broad overview of common AM processes is given. Additive manufacturing is a promising field for the advancement of manufacturing due to its ability to yield near-net-shaped components that require minimal post-processing prior to end-use. AM also allows for the fabrication of prototypes as well as economical small batch production. Aluminum alloys processed via AM would be very beneficial to the manufacturing industry due to their high strength to weight ratio; however, many of the conventional alloy compositions have been shown …


Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong Jul 2020

Effects Of Zirconia Doping On Additively Manufactured Alumina Ceramics By Laser Direct Deposition, John M. Pappas, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The ability to additively manufacture functional alumina ceramics has the potential to lower manufacturing costs and development time for complex components. In this study, the doping effects of zirconia on laser direct deposited alumina ceramics were investigated. The microstructure of the printed samples was analyzed in terms of grain size and composition distribution. The addition of zirconia was found to accumulate along alumina grain boundaries and resulted in significant grain refinement. The zirconia doping largely reduced crack formation during processing compared to that of pure alumina samples. In the case of 10 wt% zirconia, cracking during deposition was nearly completely …


Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai Aug 2018

Mechanical Properties Of Zr-Based Bulk Metallic Glass Parts Fabricated By Laser-Foil-Printing Additive Manufacturing, Yingqi Li, Ming-Chuan Leu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The application of bulk metallic glasses (BMGs) has been traditionally limited to parts with small dimensions and simple geometries, due to the requirement of fast cooling during the conventional process of casting. This research exemplifies a promising additive manufacturing method, i.e., laser-foil-printing (LFP), to fabricate high-quality BMG parts with large dimensions and complex geometries. In this study, Zr52.5Ti5Al10Ni14.6Cu17.9 BMG parts were fabricated by LFP technology in which MG foils are laser welded layer-by- layer upon a substrate. The mechanical properties of the fabricated BMG parts were measured using micro-indentation, tensile test …


Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte Aug 2013

Effect Of Architecture And Porosity On Mechanical Properties Of Borate Glass Scaffolds Made By Selective Laser Sintering, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Taylor Comte

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The porosity and architecture of bone scaffolds, intended for use in bone repair or replacement, are two of the most important parameters in the field of bone tissue engineering. The two parameters not only affect the mechanical properties of the scaffolds but also aid in determining the amount of bone regeneration after implantation. Scaffolds with five different architectures and four porosity levels were fabricated using borate bioactive glass (13-93B3) using the selective laser sintering (SLS) process. The pore size of the scaffolds varied from 400 to 1300 μm. The compressive strength of the scaffolds varied from 1.7 to 15.5 MPa …


Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez Aug 2011

Effect Of Particle Size, Binder Content And Heat Treatment On Mechanical Properties Of 13-93 Bioactive Glass Scaffolds, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas, Mariano Garcia Velez

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Particle size, binder content and the post-processing schedule are important parameters that affect the microstructure, and, hence, the mechanical properties of parts produced using the indirect selective laser sintering process. 13-93 bioactive glass, with mean particle sizes ranging from 10 μm to 44 μm, is mixed with different amounts of stearic acid binder to fabricate green scaffolds. Through the design of the post-processing schedule, the time required for postprocessing the green scaffolds is reduced from the initial 80 hrs to 12 hrs. The compressive strength varies from 41 MPa for a part with~60% porosity to 157 MPa for a part …


Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan Aug 2008

Freeform Fabrication Of Zirconium Diboride Parts Using Selective Laser Sintering, Ming-Chuan Leu, Erik B. Adamek, Tieshu Huang, Greg Hilmas, Fatih Dogan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Selective Laser Sintering (SLS) process, both flexural test bars and 3D fuel injector components have been fabricated with zirconium diboride (ZrB2) powder. Stearic acid was selected as the binder. Values of SLS process parameters were chosen such that the green parts could be built with sharp geometrical features and that the sintered parts could have good mechanical properties. After binder burnout and sintering, the SLS fabricated ZrB2 test bars achieved 80% theoretical density, and the average flexural strength of the sintered samples was 195 MPa. These values demonstrate the feasibility of the SLS process for …