Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

Simulation

Mechanical Engineering Faculty Publications

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote Dec 2018

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote

Mechanical Engineering Faculty Publications

Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. The authors compared joint kinematics, kinetics, and muscle forces resulting from processing data from 7 healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8 degrees {[}1.5 degrees] in sagittal plane hip rotation), kinetics (maximal difference: 0.36 {[}0.10] N.m/kg in sagittal plane …


Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er Feb 2018

Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can …


An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye Jul 2017

An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye

Mechanical Engineering Faculty Publications

Operating room (OR) scheduling is important. Because of increasing demand for surgical services, hospitals must provide high quality care more efficiently with limited resources. When constructing the OR schedule, it is necessary to consider the availability of downstream resources, such as intensive care unit (ICU) and post anaesthesia care unit (PACU). The unavailability of downstream resources causes blockings between every two consecutive stages. In this paper we address the master surgical schedule (MSS) problem in order to minimize blockings between two consecutive stages. First, we present a blocking minimization (BM) model for the MSS by using integer programming, based on …


Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe Jun 2012

Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe

Mechanical Engineering Faculty Publications

When designing sports equipment, it is often desirable to predict how certain design parameters will affect human performance. In many instances, this requires a consideration of human musculoskeletal mechanics and adaptive neuromuscular control. Current computational methods do not represent these mechanisms, and design optimization typically requires several iterations of prototyping and human testing. This paper introduces a computational method based on musculoskeletal modeling and optimal control, which has the capability to predict the effect of mechanical equipment properties on human performance. The underlying assumption is that users will adapt their neuromuscular control according to an optimality principle, which balances task …


Optimality Principles For Model-Based Prediction Of Human Gait, Marko Ackermann, Antonie J. Van Den Bogert Apr 2010

Optimality Principles For Model-Based Prediction Of Human Gait, Marko Ackermann, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Although humans have a large repertoire of potential movements, gait patterns tend to be stereotypical and appear to be selected according to optimality principles such as minimal energy. When applied to dynamic musculoskeletal models such optimality principles might be used to predict how a patient's gait adapts to mechanical interventions such as prosthetic devices or surgery. In this paper we study the effects of different performance criteria on predicted gait patterns using a 2D musculoskeletal model. The associated optimal control problem for a family of different cost functions was solved utilizing the direct collocation method. It was found that fatigue-like …


Design And Validation Of A General Purpose Robotic Testing System For Musculoskeletal Applications, Lawrence D. Noble, Robb W. Colbrunn, Dong-Gil Lee, Antonie J. Van Den Bogert, Brian L. Davis Feb 2010

Design And Validation Of A General Purpose Robotic Testing System For Musculoskeletal Applications, Lawrence D. Noble, Robb W. Colbrunn, Dong-Gil Lee, Antonie J. Van Den Bogert, Brian L. Davis

Mechanical Engineering Faculty Publications

Orthopaedic research on in vitro forces applied to bones, tendons, and ligaments during joint loading has been difficult to perform because of limitations with existing robotic simulators in applying full-physiological loading to the joint under investigation in real time. The objectives of the current work are as follows: (1) describe the design of a musculoskeletal simulator developed to support in vitro testing of cadaveric joint systems, (2) provide component and system-level validation results, and (3) demonstrate the simulator’s usefulness for specific applications of the foot-ankle complex and knee. The musculoskeletal simulator allows researchers to simulate a variety of loading conditions …


A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch Apr 2009

A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch

Mechanical Engineering Faculty Publications

Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically require real-time, ldquopatient-in-the-looprdquo experimentation. A real-time, 3-D, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out noninvasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a 3-DOF glenohumeral joint as well as elbow flexion/extension and pronation/supination and contains 22 muscles …


Pre-Impact Lower Extremity Posture And Brake Pedal Force Predict Foot And Ankle Forces During An Automobile Collision, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert Dec 2004

Pre-Impact Lower Extremity Posture And Brake Pedal Force Predict Foot And Ankle Forces During An Automobile Collision, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Background: The purpose of this study was to determine how a driver’s foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. Method of Approach: A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction …


Foot And Ankle Forces During An Automobile Collision: The Influence Of Muscles, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert May 2004

Foot And Ankle Forces During An Automobile Collision: The Influence Of Muscles, Elizabeth C. Hardin, Anne Su, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

Muscles have a potentially important effect on lower extremity injuries during an automobile collision. Computational modeling can be a powerful tool to predict these effects and develop protective interventions. Our purpose was to determine how muscles influence peak foot and ankle forces during an automobile collision. A 2-D bilateral musculoskeletal model was constructed with seven segments. Six muscle groups were included in the right lower extremity, each represented by a Hill muscle model. Vehicle deceleration data were applied as input and the resulting movements were simulated. Three models were evaluated: no muscles (NM), minimal muscle activation at a brake pedal …