Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

Simulation

Institution
Publication Year
Publication

Articles 1 - 30 of 58

Full-Text Articles in Engineering

Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu Jan 2023

Numerical Simulation Of The Donor-Assisted Stir Material For Friction Stir Welding Of Aluminum Alloys And Carbon Steel, Joseph Maniscalco, Abdelmageed A. Elmustafa, Srinivasa Bhukya, Zhenhua Wu

Mechanical & Aerospace Engineering Faculty Publications

In this research effort, we explore the use of a donor material to help heat workpieces without wearing the tool or adding more heat than necessary to the system. The donor material would typically be a small piece (or pieces) of material, presumably of lower strength than the workpiece but with a comparable melting point. The donor, a sandwich material, is positioned between the tool head and the material to be welded, where the tool initially plunges and heats up in the same manner as the parent material that is intended for welding. The donor material heats up subsequent to …


3d Simulation Of A Yogurt Filling Machine Using Grafcet Studio And Factory Io: Realization Of Industry 4.0, Bashir Salah, Waqas Saleem, Razaullah Khan, Ahmed Tawhid Ahmed Soliman Jan 2023

3d Simulation Of A Yogurt Filling Machine Using Grafcet Studio And Factory Io: Realization Of Industry 4.0, Bashir Salah, Waqas Saleem, Razaullah Khan, Ahmed Tawhid Ahmed Soliman

Articles

Manufacturing systems, enterprises and academic institutions worldwide are implementing industry 4.0 (IR4.0). By integrating the services and equipment, IR4.0 develops autonomous systems that manage industrial operations and exchange real-time data in real time. This study includes a simulation of an existing production system using the GRAFCET Studio software.


Using Strategic Options Development And Analysis (Soda) To Understand The Simulation Accessibility Problem, Andrew J. Collins, Ying Thaviphoke, Antuela A. Tako Nov 2022

Using Strategic Options Development And Analysis (Soda) To Understand The Simulation Accessibility Problem, Andrew J. Collins, Ying Thaviphoke, Antuela A. Tako

Engineering Management & Systems Engineering Faculty Publications

Simulation modelling is applied to a wide range of problems, including defense and healthcare. However, there is a concern within the simulation community that there is a limited use and implementation of simulation studies in practice. This suggests that despite its benefits, simulation may not be reaching its potential in making a real-world impact. The main reason for this could be that simulation tools are not widely accessible in industry. In this paper, we investigate the issues that affect simulation modelling accessibility through a workshop with simulation practitioners. We use Strategic Options Development and Analysis (SODA), a problem-structuring approach that …


Human Ergonomic Simulation To Support The Design Of An Exoskeleton For Lashing/De-Lashing Operations Of Containers Cargo, Francesco Longo, Antonio Padovano, Vittorio Solina, Virginia D' Augusta, Stefan Venzl, Roberto Calbi, Michele Bartuni, Ornella Anastasi, Rafael Diaz Jan 2022

Human Ergonomic Simulation To Support The Design Of An Exoskeleton For Lashing/De-Lashing Operations Of Containers Cargo, Francesco Longo, Antonio Padovano, Vittorio Solina, Virginia D' Augusta, Stefan Venzl, Roberto Calbi, Michele Bartuni, Ornella Anastasi, Rafael Diaz

VMASC Publications

Lashing and de-lashing operations of containers cargo on board containerships are considered as quite strenuous activities in which operators are required to work continuously over a 6 or 8 hours shift with very limited break. This is mostly because containerships need to leave the port as soon as possible and containers loading and unloading operations must be executed with very high productivity (stay moored in a port is a totally unproductive time for a ship and a loss-making business for a shipping company). Operators performing lashing and de-lashing operations are subjected to intense ergonomic stress and uncomfortable working postures. To …


Pore Microstructure Impacts On Lithium Ion Transport And Rate Capability Of Thick Sintered Electrodes, Ziyang Nie, Rohan Parai, Chen Cai, Charles Michaelis, Jacob M. Lamanna, Daniel S. Hussey, David L. Jacobson, Dipankar Ghosh, Gary M. Koenig Jr. Jan 2021

Pore Microstructure Impacts On Lithium Ion Transport And Rate Capability Of Thick Sintered Electrodes, Ziyang Nie, Rohan Parai, Chen Cai, Charles Michaelis, Jacob M. Lamanna, Daniel S. Hussey, David L. Jacobson, Dipankar Ghosh, Gary M. Koenig Jr.

Mechanical & Aerospace Engineering Faculty Publications

Increasing electrode thickness is one route to improve the energy density of lithium-ion battery cells. However, restricted Li+ transport in the electrolyte phase through the porous microstructure of thick electrodes limits the ability to achieve high current densities and rates of charge/discharge with these high energy cells. In this work, processing routes to mitigate transport restrictions were pursued. The electrodes used were comprised of only active material sintered together into a porous pellet. For one of the electrodes, comparisons were done between using ice-templating to provide directional porosity and using sacrificial particles during processing to match the geometric density …


Annual Simulation Of Photovoltaic Retrofits Within Existing Parabolic Trough Concentrating Solar Powerplants, Nipun Goel, Hannah O'Hern, Matthew Orosz, Todd Otanicar Nov 2020

Annual Simulation Of Photovoltaic Retrofits Within Existing Parabolic Trough Concentrating Solar Powerplants, Nipun Goel, Hannah O'Hern, Matthew Orosz, Todd Otanicar

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Solar power for electricity production comes from either photovoltaics or concentrating solar power plants. The former has seen rapid growth and expansion due to the rapid fall in global prices, while the latter has seen moderate growth due to ability to cheaply store thermal energy for later use. Hybridization, or combining photovoltaics with concentrating solar power represents a potential way for lowering cost while enabling long term storage. Over 5 GW of capacity exist worldwide using parabolic trough style technology for concentrating solar power which presents a unique option for optimization in the form of a photovoltaic retrofit. While it …


Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb Jun 2020

Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb

Mineta Transportation Institute Publications

The study addresses two of the main challenges facing combustion modeling for transportation fuels: simultaneous simulation of non-related combustion problems and reducing the computational cost of the modeling process itself. To address the first challenge, researchers determine a characteristic flame time from thermal diffusivity and laminar burning velocity. Researchers examine parametric dependence of flame time and ignition delay time on pressure, temperature and equivalence ratio for methane, based on validated chemical kinetic mechanisms. The study reveals flame time and ignition delay time show similar temperature dependence, flame time has stronger dependence on equivalence ratio and weaker dependence on pressure than …


Hybrid Phase-Change Lattice Boltzmann Simulation Of Vapor Condensation On Vertical Subcooled Walls, Wandong Zhao, Yuan Gao, Ruijie Li, Songgang Qiu, Yin Zhang, Ben Xu Feb 2020

Hybrid Phase-Change Lattice Boltzmann Simulation Of Vapor Condensation On Vertical Subcooled Walls, Wandong Zhao, Yuan Gao, Ruijie Li, Songgang Qiu, Yin Zhang, Ben Xu

Mechanical Engineering Faculty Publications and Presentations

Saturated vapor condensation on homogenous and heterogeneous subcooled walls is presented in this study by adopting a hybrid phase-change multiple-relaxation-time Lattice Boltzmann model. The effects of wall wettability on the condensation process, including droplets’ growth, coalescence and falling, and the influence of vapor flow to condensation are investigated. The results demonstrate that the heat fluxes around the triple-phase contact lines are higher than that in other cold areas in homogeneous subcooled walls, which actually indicates the fact that filmwise condensation is preventing the continuous condensation process. Furthermore, the dropwise condensation can be formed more easily on the heterogeneous surface with …


Competence Of A Spray Passive Down-Draft Evaporative Cooling (Pdec) System For Space Cooling, Daeho Kang, Richard K. Strand Sep 2019

Competence Of A Spray Passive Down-Draft Evaporative Cooling (Pdec) System For Space Cooling, Daeho Kang, Richard K. Strand

Publications and Research

A spray PDEC system has been relatively less considered than other passive cooling strategies as one of the viable low-energy solutions in the cooling of buildings while having a great potential in energy savings. This study is intended to evaluate the capability of a spray PDEC system for space cooling. It comprises four simulation scenarios to see the system response and influence of indoor thermal environment when a spray PDEC system is adopted as a primary cooling system in two different climates. The simulation results show that a spray PDEC system causes a substantial variation in the indoor thermal environment …


How Will Climate Alter Efficiency Objectives? Simulated Impact Of Using Recent Versus Historic European Weather Data For The Cost-Optimal Design Of Nearly Zero Energy Buildings (Nzebs), Florida Solar Energy Center, Delia D'Agostino Aug 2019

How Will Climate Alter Efficiency Objectives? Simulated Impact Of Using Recent Versus Historic European Weather Data For The Cost-Optimal Design Of Nearly Zero Energy Buildings (Nzebs), Florida Solar Energy Center, Delia D'Agostino

FSEC Energy Research Center®

Achieving "nearly zero energy buildings" (NZEB) has been established as a vital objective over the next decade within the European Union (EU) [1,2]. Previous work has shown that a series of very cost-effective thermal efficiency measures, equipment, appliance and renewable energy choices are available across climates to reach the NZEB objective. Resulting detailed energy and economic optimization findings have been obtained and published. One area that has just begun to be explored, however, is how selection of weather files and their application against coming climate change can influence outcomes from energy optimization procedures.

Presented at: CLIMA 2019, REHVA 13th HVAC …


Analysis Of The System Response Of A Spray Passive Downdraft Evaporative Cooling System, Daeho Kang, Richard K. Strand Jun 2019

Analysis Of The System Response Of A Spray Passive Downdraft Evaporative Cooling System, Daeho Kang, Richard K. Strand

Publications and Research

A spray Passive Downdraft Evaporative Cooling (PDEC) system achieves great savings for space cooling and improves indoor environmental quality by supplying a large amount of fresh outdoor air. As previous studies heavily focused on the energy saving capability of a spray PDEC system due to lack of methods for a detailed analysis, the influence of cool humid supply air from a spray PDEC system in a space in buildings has not been comprehensively studied. This study is intended to evaluate the competence of a spray PDEC system as a primary cooling system in typical spaces in a primary school building …


Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote Dec 2018

Opensim Versus Human Body Model: A Comparison Study For The Lower Limbs During Gait, Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J. Van Basten, Ilse Jonkers, Antonie J. Van Den Bogert, Friedl De Groote

Mechanical Engineering Faculty Publications

Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. The authors compared joint kinematics, kinetics, and muscle forces resulting from processing data from 7 healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8 degrees {[}1.5 degrees] in sagittal plane hip rotation), kinetics (maximal difference: 0.36 {[}0.10] N.m/kg in sagittal plane …


Development Of Iowa Dot Combination Bridge Separation Barrier With Bicycle Railing, Chaz M. Ginger Aug 2018

Development Of Iowa Dot Combination Bridge Separation Barrier With Bicycle Railing, Chaz M. Ginger

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The Iowa Department of Transportation typically builds separation barriers between vehicle and pedestrian/bicycle facilities when sidewalks or trails are present on vehicular bridges. Currently, Iowa DOT employs a combination bridge rail that utilizes a concrete parapet that previously had been successfully evaluated to National Cooperative Highway Research Program (NCHRP) Report 350 Test Level 4 (TL-4) criteria for these situations. While the parapet had been successfully evaluated, the combination bridge rail system as a whole had not been evaluated to any crash test standards. Iowa DOT desired that researchers at Midwest Roadside Safety Facility (MwRSF) design and test a combination bridge …


Ring And Peg Simulation For Minimally Invasive Surgical Robot, Evan Brown Apr 2018

Ring And Peg Simulation For Minimally Invasive Surgical Robot, Evan Brown

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Surgical procedures utilizing minimally invasive laparoscopic techniques have shown less complications, better cosmetic results, and less time in the hospital than conventional surgery. These advantages are partially offset by inherent difficulties of the procedures which include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical robots have been designed to overcome the limitations, the Da Vinci being the most widely used. A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited insertion profile and expand to perform a variety of operations, has been created as a less expensive, versatile alternative to the Da …


Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er Feb 2018

Formation Of Two-Way Shape Memory Effect In Niti Alloy Using Pulsed Laser Irradiation, Saidjafarzoda Ilhom, Khomidkhodza Kholikov, Peizhen Li, Dovletgeldi Seyitliyev, Zachary Thomas, Duvall Roberts, Omer San, Haluk E. Karaca, Ali O. Er

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can …


An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye Jul 2017

An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye

Mechanical Engineering Faculty Publications

Operating room (OR) scheduling is important. Because of increasing demand for surgical services, hospitals must provide high quality care more efficiently with limited resources. When constructing the OR schedule, it is necessary to consider the availability of downstream resources, such as intensive care unit (ICU) and post anaesthesia care unit (PACU). The unavailability of downstream resources causes blockings between every two consecutive stages. In this paper we address the master surgical schedule (MSS) problem in order to minimize blockings between two consecutive stages. First, we present a blocking minimization (BM) model for the MSS by using integer programming, based on …


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park May 2017

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly …


Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney Oct 2016

Optimizing The Telescope Assembly Alignment Simulator For Sofia, Zoe E. Sharp, Alex Quyenvo, Jennifer Briggs, Brian Eney

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) conducts research on a modified Boeing 747sp aircraft. By using a variety of infrared science instruments mounted on a 2.7 meter telescope, researchers can make discoveries about the galactic center, star formation, and various topics associated with a deeper understanding of our universe. To efficiently collect data through the SOFIA instruments, the instruments must be tested and prepared prior to being placed on the aircraft. Therefore, with the use of the Telescope Assembly Alignment Simulator (TAAS), researchers can design and construct improvements needed for these instruments to efficiently perform while in flight. The …


Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata Jun 2016

Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata

Physics Faculty Publications

We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.


Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine May 2016

Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine

Mineta Transportation Institute Publications

Increased electrification of vehicles has increased the use of lithium-ion batteries for energy storage, and raised the issue of what to do with post-vehicle-application batteries. Three possibilities have been identified: 1) remanufacturing for intended reuse in vehicles; 2) repurposing for non-vehicle, stationary storage applications; and 3) recycling, extracting the precious metals, chemicals and other byproducts. Advances in repurposing and recycling are presented, along with a mathematical model that forecasts the manufacturing capacity needed for remanufacturing, repurposing, and recycling. Results obtained by simulating the model show that up to a 25% reduction in the need for new batteries can be achieved …


Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau Jul 2015

Simulation And Validation Of Radio Frequency Heating Of Shell Eggs, Soon Kiat Lau

Department of Food Science and Technology: Dissertations, Theses, and Student Research

Finite element models were developed with the purpose of finding an optimal radio frequency (RF) heating setup for pasteurizing shell eggs. Material properties of the yolk, albumen, and shell were measured and fitted into equations that were used as inputs for the model. When the egg was heated by itself, heating tend to be focused at the air cell to result in a “coagulation ring.” The focused heating near the air cell of the egg prevented satisfactory pasteurization of the egg, but deeper analysis of the simulation results offered a new perspective on how non-uniform RF heating could occur in …


Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen Jan 2015

Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen

Physics Faculty Publications

A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) …


Simulation Of Vertical Axis Wind Turbines With Variable Pitch Foils, L. Damon Woods, John F. Gardner, Kurt S. Myers Nov 2013

Simulation Of Vertical Axis Wind Turbines With Variable Pitch Foils, L. Damon Woods, John F. Gardner, Kurt S. Myers

Mechanical and Biomedical Engineering Faculty Publications and Presentations

A dynamic computer model of a turbine was developed in MATLAB in order to study the behavior of vertical axis wind turbines (VAWTs) with variable pitch (articulating) foils. The simulation results corroborated the findings of several empirical studies on VAWTs. The model was used to analyze theories of pitch articulation and to inform the discussion on turbine design. Simulations of various models showed that pitch articulation allowed Darrieus-style vertical axis wind turbines to start from rest. Once in motion, the rotor was found to accelerate rapidly to very high rotational velocities. The simulations revealed a plateau region of high efficiency …


Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump And Heat Recovery Equipment In Energyplus, Florida Solar Energy Center, Richard Raustad Sep 2013

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump And Heat Recovery Equipment In Energyplus, Florida Solar Energy Center, Richard Raustad

FSEC Energy Research Center®

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow air conditioning (VRF AC) manufacturers, provided a detailed computer model for a VRF AC system in the United States Department of Energy's (U.S. DOE) EnergyPlus' building energy simulation tool. No other simulation tool currently has the capability to accurately model this state-of-the-art VRF heating, ventilating, and air conditioning (HVAC) equipment. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance with that predicted by the use of this new model through computer simulation.

This project …


Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao Sep 2013

Computational Modeling And Experimental Study On Optical Microresonators Using Optimal Spherical Structure For Chemical Sensing, Hanzheng Wang, Lei Yuan, Jie Huang, Xinwei Lan, Cheol-Woon Kim, Lan Jiang, Hai Xiao

Electrical and Computer Engineering Faculty Research & Creative Works

Chemical sensors based on optical microresonators have been demonstrated highly sensitive by monitoring the refractive index (RI) changes in the surrounding area near the resonator surface. In an optical resonator, the Whispering Gallery Modes (WGMs) with high quality (Q) factor supported by the spherical symmetric structure interacts with the contiguous background through evanescent field. Highly sensitive detection can be realized because of the long lifetime of the photons. The computational models of solid glass microspheres and hollow glass spheres with porous wall (PW-HGM) were established. These two types of microresonators were studied through simulations. The PWHGM resonator was proved as …


Aspen Plus Simulation Of Biomass Gasification In A Steam Blown Dual Fluidised Bed, Wayne Doherty, Anthony Reynolds, David Kennedy Aug 2013

Aspen Plus Simulation Of Biomass Gasification In A Steam Blown Dual Fluidised Bed, Wayne Doherty, Anthony Reynolds, David Kennedy

Book/Book Chapters

The efficient utilisation of biomass resources is of utmost importance. Biomass gasification offers much higher efficiencies than combustion. Gasification is a process in which a fuel is converted to a combustible gas (syngas). A dual fluidised bed gasifier known as the fast internally circulating fluidised bed (FICFB) was selected. It has been demonstrated at industrial scale and data is readily available for model validation. An Aspen Plus model was developed to simulate the FICFB gasifier. The model is based on Gibbs free energy minimisation and the restricted equilibrium method was used to calibrate it. The model has been validated and …


Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik Jan 2013

Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik

Masters Theses 1911 - February 2014

Producing gasoline-type fuels from lignocellulosic biomass has two advantages over producing alcohol-type fuels from plant sugars: gasoline has superior fuel characteristics and plant lignin/cellulose does not compete with human food supplies. A promising technology for converting lignocellulose to fuel is catalytic fast pyrolysis (CFP). The process involves injecting finely ground biomass into a fluidized bed reactor (FBR) at high temperatures, which reduce the biomass to gases that react inside the catalyst particles. This entails complex hydrodynamics to efficiently mix a stream of biomass into a catalyst bed that is fluidized by a separate stream of inert gas. Understanding the hydrodynamics …


Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe Jun 2012

Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe

Mechanical Engineering Faculty Publications

When designing sports equipment, it is often desirable to predict how certain design parameters will affect human performance. In many instances, this requires a consideration of human musculoskeletal mechanics and adaptive neuromuscular control. Current computational methods do not represent these mechanisms, and design optimization typically requires several iterations of prototyping and human testing. This paper introduces a computational method based on musculoskeletal modeling and optimal control, which has the capability to predict the effect of mechanical equipment properties on human performance. The underlying assumption is that users will adapt their neuromuscular control according to an optimality principle, which balances task …


Improving Health Care Quality And Safety: The Development And Assessment Of Laparoscopic Surgery Instrumentation, Practices And Procedures, Bernadette Mccrory May 2012

Improving Health Care Quality And Safety: The Development And Assessment Of Laparoscopic Surgery Instrumentation, Practices And Procedures, Bernadette Mccrory

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Adverse events due to medical errors are a leading cause of death in the United States exceeding the mortality rates of motor vehicle accidents, breast cancer and AIDS. Improvements can and should be made to reduce the rates of preventable surgical errors since they account for nearly half of all adverse events within hospitals. Although minimally invasive surgery has proven patient benefits such as reduced postoperative pain and hospital stay, its operative environment imposes substantial physical and cognitive strain on the surgeon increasing the risk of error. In order to mitigate errors and protect patients, a multidisciplinary approach was taken …


Creating Performance Curves For Variable Refrigerant Flow Heat Pumps In Energyplus, Florida Solar Energy Center, Richard Raustad Mar 2012

Creating Performance Curves For Variable Refrigerant Flow Heat Pumps In Energyplus, Florida Solar Energy Center, Richard Raustad

FSEC Energy Research Center®

This document describes methods to generate performance curve coefficients for variable refrigerant flow heat pumps in DOE's EnergyPlus building energy simulation program. Manufactures performance data for capacity and power are used to create full-load and part-load performance curves for cooling and heating operating modes. When performance variations for full-load capacity or power cannot be modeled using a single performance curve, the data set is divided into lower and upper temperature regions and dual performance curves are used. Table objects may also be created to substitute when performance curves do not provide the required accuracy. These performance curves or tables are …