Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

Additive manufacturing

Institution
Publication Year
Publication

Articles 1 - 30 of 108

Full-Text Articles in Engineering

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou Mar 2024

Heat Treatments For Minimization Of Residual Stresses And Maximization Of Tensile Strengths Of Scalmalloy® Processed Via Directed Energy Deposition, Rachel Boillat-Newport, Sriram Praneeth Isanaka, Jonathan Kelley, Frank Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Scalmalloy® is an Al-Mg-Sc-Zr-Based Alloy Specifically Developed for Additive Manufacturing (AM). This Alloy is Designed for Use with a Direct Aging Treatment, as Recommended by the Manufacturer, Rather Than with a Multistep Treatment, as Often Seen in Conventional Manufacturing. Most Work with Scalmalloy® is Conducted using Powder Bed Rather Than Powder-Fed Processes. This Investigation Seeks to Fill This Knowledge Gap and Expand Beyond Single-Step Aging to Promote an overall Balanced AM-Fabricated Component. for This Study, Directed Energy Deposition (DED)-Fabricated Scalmalloy® Components Were Subjected to Low-Temperature Treatments to Minimize Residual Stresses Inherent in the Material Due to the Layer-By-Layer Build Process. …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu Sep 2023

Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Concentrated solar power (CSP) is a reliable renewable energy source that is progressively lowering its cost of energy. However, the heat loss due to reflected and emitted radiation hinders the maximum achievable thermal efficiency for solar receiver tubes on the solar tower. Current solar selective coatings cannot withstand the high temperatures that come with state-of-the-art CSP towers often needing to be recoated soon after initial operation. We intend to use Inconel 718 with different additive manufacturing (AM) practices to construct surfaces that allow for more light-trapping to occur. By adjusting printing parameters, we can tailor a surface to allow for …


Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen May 2023

Multifunctional Additive Manufacturing And Multiphysics Numerical Investigations Of Carbon Fiber Structural Battery Composite Using A Drop-On-Demand Method With In-Situ Consolidation, Xiangyang Dong, Yuekun Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lightweight Carbon Fiber Structural Battery Composite Has Great Potential in Increasing Structural Energy Storage Efficiency for Multifunctional Applications. However, It is Still Challenging to Design Carbon Fiber Multifunctional Composite Due to Lack of Proper Manufacturing Methods. in This Study, an Integrated Multifunctional Design and Fabrication Approach is Developed by Combining a Drop-On-Demand Additive Manufacturing Method with a Multiphysics Numerical Model to Guide the Development of the New Multifunctional Composite. through Deposition with In-Situ Consolidation, the Function and Thickness of Each Carbon Fiber Layer as Well as its Fiber Volume Fraction Are Accurately Controlled. Decreasing Layer Thickness Improves Flexural Properties. the …


Point Heat Source Correlation To Microstructural Evolution In Advanced Manufacturing, Mark Anderson May 2023

Point Heat Source Correlation To Microstructural Evolution In Advanced Manufacturing, Mark Anderson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Although there are different ways that advanced manufacturing can be performed, the use of single-point heat sources has become the standard to control a final product’s properties. It is imperative to understand how the heat source used in the different advanced manufacturing processes affect the microstructure of interest. The intimate relationship between the heat source and microstructure allows for controlling and tailoring a part’s properties. Utilizing different microstructural analysis, the cross-correlation of various point heat sources to developed microstructure was conducted in this dissertation.

Laser powder bed fusion allows for unique print-to-part protocols, but the dynamics of the process makes …


Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong Apr 2023

Experimental And Numerical Studies Of Slurry-Based Coextrusion Deposition Of Continuous Carbon Fiber Micro-Batteries To Additively Manufacture 3d Structural Battery Composites, Aditya R. Thakur, Xiangyang Dong

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Carbon Fiber Structural Battery Composites Have Recently Attracted Growing Interests Due to their Potentials of Simultaneously Carrying Mechanical Loads and Storing Electrical Energy for Lightweight Application. in This Study, We Present a Slurry-Based Coextrusion Deposition Method to Additively Manufacture 3D Structural Battery Composites from Carbon Fiber Micro-Batteries. Cathode Slurry is Coextruded Together with Solid Polymer Electrolyte-Coated Carbon Fibers in a Single Deposition. a Network of Carbon Fiber Micro-Batteries is Achieved within the Fabricated Structural Battery Composites. Electrochemical Tests Show a Stable Charge-Discharge Performance Up to 100 Cycles. the Rheological Behavior of the Cathode Slurry is Found to Govern the Coextrusion …


Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao Mar 2023

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 μm), layer related inconsistencies at the meso-scale (100 μm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion …


Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi Mar 2023

Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

Polycaprolactone (PCL) has been one of the most popular biomaterials in tissue engineering due to its relatively low melting temperature, excellent thermal stability, and cost-effectiveness. However, its low cell attraction, low elastic modulus, and long-term degradation time have limited its application in a wide range of scaffold studies. Dimethyl sulfone (DMSO2) is a stable and non-hazardous organosulfur compound with low viscosity and high surface tension. PCL and DMSO2 composites may overcome the limitations of PCL as a biomaterial and tailor the properties of biocomposites. In this study, PCL and DMSO2 composites were investigated as a new bio-scaffold material to increase …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf Feb 2023

Non-Destructive Infrared Thermographic Curing Analysis Of Polymer Composites, Md Ashiqur Rahman, Javier Becerril, Dipannita Ghosh, Nazmul Islam, Ali Ashraf

Mechanical Engineering Faculty Publications and Presentations

Infrared (IR) thermography is a non-contact method of measuring temperature that analyzes the infrared radiation emitted by an object. Properties of polymer composites are heavily influenced by the filler material, filler size, and filler dispersion, and thus thermographic analysis can be a useful tool to determine the curing and filler dispersion. In this study, we investigated the curing mechanisms of polymer composites at the microscale by capturing real-time temperature using an IR Thermal Camera. Silicone polymers with fillers of Graphene, Graphite powder, Graphite flake, and Molybdenum disulfide (MoS2) were subsequently poured into a customized 3D printed mold for …


Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam Jan 2023

Performance Evaluation Of Composite Sandwich Structures With Additively Manufactured Aluminum Honeycomb Cores With Increased Bonding Surface Area, M. Rangapuram, S. K. Dasari, Joseph William Newkirk, K. Chandrashekhara, H. Misak, P. R. Toivonen, D. Klenosky, T. Unruh, J. Sam

Materials Science and Engineering Faculty Research & Creative Works

Modern aerostructures, including wings and fuselages, increasingly feature sandwich structures due to their high-energy absorption, low weight, and high flexural stiffness. The face sheet of these sandwich structures are typically thin composite laminates with interior honeycombs made of Nomex or aluminum. Standard cores are structurally efficient, but their design cannot be varied throughout the structure. With additive manufacturing (AM) technology, these core geometries can be altered to meet the design requirements that are not met in standard honeycomb cores. This study used a modified aluminum honeycomb core, with increased surface area on the top and bottom, as the core material …


Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu Jan 2023

Experimental Approach For Development Of A Powder Spreading Metric In Additive Manufacturing, M. Hossein Sehhat, Austin T. Sutton, Zane Yates, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Powder Spreading is a Vital Step of Powder-Based Additive Manufacturing (AM) Processes. the Quality of Spread Powder Can Considerably Influence the Properties of Fabricated Parts. Poorly Packed Powder Beds with High Surface Roughness Result in Printed Part Layers with Large Porosity and Low Dimensional Accuracy, Leading to Poor Mechanical Properties. Therefore, the Powder Spread ability and its Dependence on Process Parameters and Powder Characteristics Should Be Quantified to Improve the Efficiency of Powder-Based AM Methods. This Study Proposes a Novel Dimensionless Powder Spread Ability Metric that Can Be Commonly Used in Different Powder-Based AM Processes. the Quality of Spread …


Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi Jan 2023

Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The employment of additive manufacturing in the non-standard environments like space, ships, or submarines has the potential to be an advanced utility not only in the pre-flight production of aerospace components and structures, but also for the onboard manufacturing of components and tools necessary for future space missions. For example, the ability to produce tools and structural components on the International Space Station can provide the space community the opportunity to make repairs and upgrades to the space station without wasting time and resources transporting such materials through additional missions. Additive manufacturing would allow for space missions to use on …


Advances In Precision Microfabrication Through Digital Light Processing: System Development, Material And Applications, Xinhui Wang, Jinghang Liu, Yang Zhang, Per Magnus Kristiansen, Aminul Islam, Michael Gilchrist, Nan Zhang Jan 2023

Advances In Precision Microfabrication Through Digital Light Processing: System Development, Material And Applications, Xinhui Wang, Jinghang Liu, Yang Zhang, Per Magnus Kristiansen, Aminul Islam, Michael Gilchrist, Nan Zhang

Articles

Digital Light Processing (DLP) is an advanced additive manufacturing technology which has garnered substantial recognition and has been extensively applications in various fields. This review focuses on the precision microfabrication process of DLP, providing an overview of the DLP 3D printing system, including the digital light engine, project lenses, motorised stage and resin vat for micro-structure fabrication. Additionally, this review paper comprehensively analyses commercially available DLP printers, covering resolution, cost and a detailed discussion on the importance of photopolymer resins, emphasising the monomer, photo-initiator, photoabsorber, etc. Based on the photopolymerisation theory, the DLP high-precision printing process is analysed, which is …


Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange Jan 2023

Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process, C. Bivens, A. Wood, D. Ruble, M. Rangapuram, S. K. Dasari, K. Chandrashekhara, J. Degrange

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Polymer injection molding processes have been used to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile and flexural testing was performed on these parts …


Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen Oct 2022

Additive Manufacturing Of Complexly Shaped Sic With High Density Via Extrusion-Based Technique – Effects Of Slurry Thixotropic Behavior And 3d Printing Parameters, Ruoyu Chen, Adam Bratten, Joshua Rittenhouse, Tian Huang, Wenbao Jia, Ming-Chuan Leu, Haiming Wen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing of dense SiC parts was achieved via an extrusion-based process followed by electrical-field assisted pressure-less sintering. The aim of this research was to study the effect of the rheological behavior of SiC slurry on the printing process and quality, as well as the influence of 3D printing parameters on the dimensions of the extruded filament, which are directly related to the printing precision and quality. Different solid contents and dispersant- Darvan 821A concentrations were studied to optimize the viscosity, thixotropy and sedimentation rate of the slurry. The optimal slurry was composed of 77.5 wt% SiC, Y2O3 and Al2O3 …


Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo Oct 2022

Predicting Defects In Laser Powder Bed Fusion Using In-Situ Thermal Imaging Data And Machine Learning, Sina Malakpour Estalaki, Cody S. Lough, Robert G. Landers, Edward C. Kinzel, Tengfei Luo

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Variation in the local thermal history during the Laser Powder Bed Fusion (LPBF) process in Additive Manufacturing (AM) can cause micropore defects, which add to the uncertainty of the mechanical properties (e.g., fatigue life, tensile strength) of the built materials. In-situ sensing has been proposed for monitoring the AM process to minimize defects, but successful minimization requires establishing a quantitative relationship between the sensing data and the porosity, which is particularly challenging with a large number of variables (e.g., laser speed, power, scan path, powder property). Physics-based modeling can simulate such an in-situ sensing-porosity relationship, but it is computationally costly. …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda Sep 2022

Automated Posture Positioning For High Precision 3d Scanning Of A Freeform Design Using Bayesian Optimization, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could …


Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava Sep 2022

Ultrafast Laser Ablation Of Inconel 718 For Surface Improvement, Sampson Canacoo, Enrique Contreras Lopez, Oscar Coronel, Farid Ahmed, Jianzhi Li, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Inconel 718 is considered difficult to machine because of its ability to maintain its properties at high temperatures. The low thermal conductivity of the alloy causes accelerated tool deterioration when machining. Selective laser melting (SLM) additive manufacturing introduces a possibility of eliminating these difficulties, and producing complex shapes with this difficult-to-machine material. However, high surface roughness and porosity usually occur at the surface of components produced through additive manufacturing. In this study, the surfaces of Inconel 718 samples produced through selective laser melting were treated using laser ablation. The process parameters for the laser ablation process were analyzed in …


Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver Aug 2022

Optimizing Build Plate Adhesion Of Polymers In Fused Granule Fabrication Processes, Alex Schroeder, Jason Weaver

Faculty Publications

Perhaps the most crucial element of fused granule fabrication (FGF) is material adhesion; in order to achieve a successful product, the material being printed must adhere to the build plate. For optimal products, the material should only adhere to the build plate until the print is complete, then be easily removable. This paper examines the effects of different build plates, environments, and bonding agents on material adhesion during the FGF process in a CNC mill machine. The force to remove polycarbonate (PC) and polypropylene (PP) from build plates was tested with various bonding agents. Except in one case, the adhesive …


A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver Aug 2022

A Comparison Of Layer Deposition And Open Molding Of Petg By Fused Pellet Fabrication In An Additive Manufacturing System, Alex Gibson, Jason Weaver

Faculty Publications

Additive manufacturing continues to offer new possibilities in both production and economics. The industry has quickly adopted it to rapidly produce parts that would be difficult or cost preventative otherwise. Recent innovation has expanded its capabilities, however there are still significant limitations. Most AM processes are restricted by materials available, in producing large parts, or by not achieving material deposition speeds to make certain products feasible. In addition, tight tolerances for features and surfaces cannot be produced without substantial post processing. High-speed Fused Pellet Fabrication (FPF) in combination with Hybrid Manufacturing (HM) offers expanded capabilities as additive and subtractive process …


Out-Of-Plane Load-Bearing And Mechanical Energy Absorption Properties Of Flexible Density-Graded Tpu Honeycombs, Ibnaj Anamika Anni, Kazi Zahir Uddin, Nicholas Pagliocca, Nand Singh, Oyindamola Rahman, George Youssef, Behrad Koohbor Aug 2022

Out-Of-Plane Load-Bearing And Mechanical Energy Absorption Properties Of Flexible Density-Graded Tpu Honeycombs, Ibnaj Anamika Anni, Kazi Zahir Uddin, Nicholas Pagliocca, Nand Singh, Oyindamola Rahman, George Youssef, Behrad Koohbor

Henry M. Rowan College of Engineering Faculty Scholarship

Honeycomb structures are widely used in applications that require excellent strain energy mitigation at low structural weights. The load-bearing and energy absorption capacity of honeycomb structures strongly depend on their cell wall thickness to edge ratios. This work studies the mechanical response and strain energy absorption characteristics of hexagonal honeycomb structures with various cell wall thicknesses in response to out-of-plane loading conditions. Honeycomb structures with various nominal densities are first additively manufactured from flexible thermoplastic polyurethane (TPU). A comprehensive experimental study characterized the mechanical strength, energy absorption performance, and the strain recoverability of the structures. Density-graded structures are then fabricated …


In-Situ Infrared Thermographic Inspection For Local Powder Layer Thickness Measurement In Laser Powder Bed Fusion, Tao Liu, Cody S. Lough, Hossein Sehhat, Yi Ming Ren, Panagiotis D. Christofides, Edward C. Kinzel, Ming-Chuan Leu Jul 2022

In-Situ Infrared Thermographic Inspection For Local Powder Layer Thickness Measurement In Laser Powder Bed Fusion, Tao Liu, Cody S. Lough, Hossein Sehhat, Yi Ming Ren, Panagiotis D. Christofides, Edward C. Kinzel, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The laser powder bed fusion (LPBF) process is strongly influenced by the characteristics of the powder layer, including its thickness and thermal transport properties. This paper investigates in-situ characterization of the powder layer using thermographic inspection. A thermal camera monitors the temperature history of the powder surface immediately after a layer of new powder is deposited by the recoating system. During this process, thermal energy diffuses from the underlying solid part, eventually raising the temperature of the above powder layer. Guided by 1D modeling of this heat-up process, experiments show how the parameterized thermal history can be correlated with powder …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti–Ni–Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti–Ni–Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallic. A bonding strength of 569.1 MPa was obtained …


Elimination Of Extraordinarily High Cracking Susceptibility Of Aluminum Alloy Fabricated By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn Mar 2022

Elimination Of Extraordinarily High Cracking Susceptibility Of Aluminum Alloy Fabricated By Laser Powder Bed Fusion, Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn

Mechanical Engineering Faculty Research and Publications

Using the calculation of phase diagrams approach and Scheil solidification modeling, the Al-2.5Mg-1.0Ni-0.4Sc-0.1Zr alloy was designed, intentionally with an extraordinarily high cracking susceptibility, making it prime for solidification cracking during laser powder bed fusion. This study demonstrates the ability to mitigate even the most extreme solidification cracking tendencies in aluminum alloys with only minor alloying additions of Sc and Zr, 0.5 wt.% max. Furthermore, by employing a simple direct ageing heat treatment, good tensile mechanical properties were observed with a yield strength of 308 MPa, an ultimate tensile strength of 390 MPa, and a total elongation of 11%.


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …