Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

2023

Institution
Keyword
Publication

Articles 1 - 30 of 310

Full-Text Articles in Engineering

Stochastic Simulation Of Construction Methods For Multi-Purpose Utility Tunnels, Shayan Jorjam, Mohammed Mawlana, Amin Hammad Dec 2023

Stochastic Simulation Of Construction Methods For Multi-Purpose Utility Tunnels, Shayan Jorjam, Mohammed Mawlana, Amin Hammad

College of Architecture and the Built Environment Faculty Papers

The traditional method of installing underground utilities (e.g., water, sewer, gas pipes, electrical cables) by burying them under roads has been used for decades. However, the repeated excavations related to this method cause problems, such as traffic congestion and business disruption, which can significantly increase financial and social costs. Multi-purpose Utility Tunnels (MUTs) are a good alternative for buried utilities. Although the initial cost of MUTs is higher than that of the traditional method, social cost savings make them more feasible, especially in dense urban areas. Different factors, such as the specifications of utilities, the location of the MUTs, and …


Functionalized Thermoplastic Polyurethane Nanofibers: An Innovative Triboelectric Energy Generator, Julia I. Salas, Diego De Leon, Sk Shamim Hasan Abir, Mohammed Jasim Uddin, Karen Lozano Dec 2023

Functionalized Thermoplastic Polyurethane Nanofibers: An Innovative Triboelectric Energy Generator, Julia I. Salas, Diego De Leon, Sk Shamim Hasan Abir, Mohammed Jasim Uddin, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

A triboelectric nanogenerator (TENG) is one of the most significantly innovative microdevices for built-in energy harvesting with wearable and portable electronics. In this study, the forcespinning technology was used to synthesize a nanofiber (NF) mat-based TENG. Polyvinylidene fluoride (PVDF) membrane was used as the negative triboelectric electrode/pole, and chemically designed and functionalized thermoplastic polyurethane (TPU) was used as the positive electrode/pole for the TENG. The electronic interference, sensitivity, and gate voltage of the synthesized microdevices were investigated using chemically modified bridging of multi-walled carbon nanotubes (MWCNT) with a TPU polymer repeating unit and bare TPU-based positive electrodes. The chemical functionality …


Floating Wind Farm Experiments Through Scaling For Wake Characterization, Power Extraction, And Turbine Dynamics, Juliaan Bossuyt, OndˇRej FercˇÁk, Zein Sadek, Charles Meneveau, Dennice Gayme, Raúl Bayoán Cal Dec 2023

Floating Wind Farm Experiments Through Scaling For Wake Characterization, Power Extraction, And Turbine Dynamics, Juliaan Bossuyt, OndˇRej FercˇÁk, Zein Sadek, Charles Meneveau, Dennice Gayme, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

In this study, wind and water tunnel experiments of turbulent wakes in a scaled floating wind farm are performed. Scaling of a floating wind farm with a scaling ratio of 1:400 is made possible by relaxing geometric scaling of the turbine platform system, such that the dynamic response can be correctly matched, and to allow for relaxing Froude scaling such that the Reynolds number can be kept large enough. Four dimensionless parameters, describing the relative importance of wind and wave loads compared to turbine inertia, are used to guide the scaled floater design. Free decay tests of the pitch and …


A Personal Tribute To Professor Ashok Midha, Larry L. Howell Dec 2023

A Personal Tribute To Professor Ashok Midha, Larry L. Howell

Faculty Publications

When I received the news that Professor Ashok Midha had passed away, I was grieved by the unexpected news. But I also felt another emotion: gratitude for having known him. I am grateful for him, for the opportunity I had to learn from him, and for the influence he has had on my life and career. I wanted to honor his memory in some way. This document is in response to that desire.

Some of my thoughts at his passing are summarized in the first chapter and the conclusion. The other writing is taken from a draft of my personal …


Inverted Pendulum With Swing-Up And Center-Stabilization System Design, Caleb Osmond Dec 2023

Inverted Pendulum With Swing-Up And Center-Stabilization System Design, Caleb Osmond

Honors Theses

The inverted pendulum is a classic problem for testing control techniques. This paper details the implementation of multiple PID control schemes and the overall design of an inverted pendulum capable of swing-up and center stabilization.


Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal Dec 2023

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal

Bagley College of Engineering Publications and Scholarship

During the world wars, Cobalt-Chromium (Co-Cr) alloys gained prominence for their use in aircraft engine components, where they exhibited high temperature strength and durability. They are used in a wide range of industries due to their unique set of qualities, particularly strength, corrosion resistance, and biocompatibility. They have emerged as versatile materials with a broad spectrum of applications, from aerospace and automotive components to biomedical implants.

This paper presents a thorough analysis of its composition, processing techniques, microstructure, mechanical properties, and performance characteristics. The primary goal of this project is to develop a PSPP (Process, structure, properties, and performance) map …


Effect Of A Geothermal Heat Pump System On Cooling Residential Buildings In A Hot, Dry Climate, Rania Rushdy Moussa, Ayman H. Mahmoud Dec 2023

Effect Of A Geothermal Heat Pump System On Cooling Residential Buildings In A Hot, Dry Climate, Rania Rushdy Moussa, Ayman H. Mahmoud

Architectural Engineering

ABSTRACT In the last century, electricity demand has doubled due to urban expansion, which has contributed to the formation of more urban heat islands (UHI) and the appearance of environmental hazards such as the global climate change phenomenon. Since residential buildings are considered the main electricity consumer sector in Egypt, they consume up to 42% of total energy consumption, which contributes to increasing temperatures and constitutes UHI in cities. In this context, the research aims to examine the effectiveness of using the closed vertical loop geothermal system (GSHPCV) for cooling residential buildings in a hot, dry climate, such as Cairo, …


Code To Combustion: Cnc Rotor Replication Using Cam, Luis Luna Dec 2023

Code To Combustion: Cnc Rotor Replication Using Cam, Luis Luna

Publications and Research

In the current landscape, computer-aided design (CAD) and computer numerical control (CNC) technologies have greatly enhanced manufacturing processes, allowing rapid and high-precision production. This project will focus on recreating a Wankel engine rotor, using SolidWorks for design and Mastercam for Computer-Aided Manufacturing (CAM) simulations. The process begins with SolidWorks, which is used for a template of a high-precision rotor model. Mastercam is then utilized for the CAM programming, allowing for the creation of intricate tool paths and tool usage simulations. This approach is vital for complex objects like the Wankel engine rotor, which demands high precision. The primary objective of …


Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui Dec 2023

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui

Mechanical and Aerospace Engineering Faculty Publications

Lightning swept stroke creates multiple lightning attachments along an aircraft in flight. This introduces distinct structural damage compared to that from a single-point lightning current injection test in laboratory. This study presents both experimental and numerical studies on lightning damage in carbon fibre-reinforced polymer (CFRP) composites under swept stroke. Coupled electrical–thermal finite element (FE) models were proposed to predict lightning damage to CFRP composites under single-point current injection and swept stroke, respectively. A lightning swept stroke testing method was proposed by embedding a copper wire inside the composites to simulate multiple lightning attachments on the composites. The FE-predicted damage from …


A Generalized Machine Learning-Based Classifier Considering Cost-Effective Features For Automated Fault Detection And Diagnosis (Afdd) Of Packaged Rooftop Units, Md Rasel Uddin Dec 2023

A Generalized Machine Learning-Based Classifier Considering Cost-Effective Features For Automated Fault Detection And Diagnosis (Afdd) Of Packaged Rooftop Units, Md Rasel Uddin

Dissertations and Doctoral Documents from University of Nebraska-Lincoln, 2023–

Packaged rooftop units (RTUs) are widely used for space conditioning in commercial buildings and manufacturing facilities. The typical soft faults related to RTUs degrade the system's performance in terms of cooling capacity, power consumption, and Coefficient of Performance (COP), detrimentally affecting both the equipment and energy consumption and the environment. Previous research in soft fault detection for rooftop units lacked classifier validation using lab and field data, developing a generalizable algorithm, and analyzing its performance across varying fault intensities. Using a simulated data library for multiple rooftop units, this study proposes a machine-learning classifier with a reduced set of 9 …


Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu Dec 2023

Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2-addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation …


Husker Motorsports Active Drag Reduction System, Creighton Hughes, Evan Killian, Micah Busboom, Aj Johnson, Jude Steffen Dec 2023

Husker Motorsports Active Drag Reduction System, Creighton Hughes, Evan Killian, Micah Busboom, Aj Johnson, Jude Steffen

Honors Theses

Formula SAE is a multifaceted competition that involves student teams designing and competing with an open-wheel style race car. There are 5 different dynamic events included in the competition. Each event requires a unique aerodynamic setup to have the best performance possible. This design project focuses on a drag reduction system (DRS) that will improve aerodynamic performance, resulting in faster lap times and increased competitiveness. Key features include a direct electronic actuation mechanism that will allow the rear wing to be adjusted during a race. The benefits of the DRS system, include increased speed, improved handling, and greater fuel efficiency …


Impact Of Material And Tunnel Barrier Quality On Spin Transport In A Cvd Graphene Non-Local Spin Valve Device Array, Samuel T. Olson, Daniel Still, Kaleb Hood, Otto Zietz, Jun Jiao Dec 2023

Impact Of Material And Tunnel Barrier Quality On Spin Transport In A Cvd Graphene Non-Local Spin Valve Device Array, Samuel T. Olson, Daniel Still, Kaleb Hood, Otto Zietz, Jun Jiao

Mechanical and Materials Engineering Faculty Publications and Presentations

Wafer-scale graphene films produced via chemical vapor deposition (CVD) are now commercially available, however these films inherently contain randomly distributed defects such as adlayers and grain boundaries. This report discusses the impact of these defects on the signal integrity of an array of graphene-based non-local spin valves (NLSVs). It was found that critical spin parameters fluctuate drastically between adjacent identical devices. Investigation of the channel quality indicated that adlayers do not affect spin signal significantly even when located directly in the spin transport region of the device. In contrast, grain boundary defects within the spin transport region have significant impact …


An Icfd Fluid Model Used In A Mash Tl-6 Vehicle Model, Md Zunayed Habib Dec 2023

An Icfd Fluid Model Used In A Mash Tl-6 Vehicle Model, Md Zunayed Habib

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The objective of this thesis was to develop an ICFD finite element model of a partially filled deformable container suitable for impact scenarios. This model will be later incorporated into the existing TL-6 vehicle model, which is a tractor-tank trailer vehicle model. Previous finite element fluid models for the TL-6 vehicle used an elastic fluid model, which could not predict the fluid behavior correctly.

A study was conducted on the ICFD modeling and an improved ICFD model has been developed using the LS-DYNA, a finite element analysis software. Different properties and parameters of the fluid and the container were adopted …


Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson Dec 2023

Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This paper presents an experimental study of drop impingement and thermal atomization on hydrophobic and superhydrophobic (SH) surfaces. Superhydrophobic surfaces having both microscale and nanoscale geometry are considered. Microscale SH surfaces are coated with a hydrophobic coating and exhibit micropillars and cavities which are classified using the surface solid fraction and center to center pitch. The solid fraction and pitch values explored in this study range from 0.05-1.0 and 8-60 μm respectively. Nanoscale textured surfaces are created by applying a blanket layer of carbon nanotubes. Both types of surfaces are further classified by a temperature jump length (λ …


Experimental Analysis Of Nonlinear Wave Propagation In Bistable Mechanical Metamaterials With A Defect, Samuel R. Harre Dec 2023

Experimental Analysis Of Nonlinear Wave Propagation In Bistable Mechanical Metamaterials With A Defect, Samuel R. Harre

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Mechanical metamaterials built up of compliant units can support the propagation of linear and nonlinear waves. A popular architecture consists of a one-dimensional chain of bistable elements connected by linear springs. This type of chain can support nonlinear transition waves that switch each element from one stable state to the other as they propagate along the chain. One way to manipulate the propagation of such waves is via introduction of a local inhomogeneity, i.e., a defect in the otherwise periodic chain. Recent analytical and numerical work has shown that based on its initial velocity, a transition wave may be reflected, …


The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park Dec 2023

The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Use of Ultrathin Film Coatings Prepared through Atomic Layer Deposition (ALD) Has Become Widespread for Improving Lithium-Ion Diffusivity of Active Particles, Which Plays a Crucial Role in Determining the Rate Capability of Lithium-Ion Batteries (LIBs). in This Study, the Impact of ALD Coating Thickness on Ionic Diffusivity in CeO2-Coated LiMn2O4 (LMO) Cathode Particles is Comprehensively Investigated through First-Principles Calculations by Focusing on the Trade-Offs between the Physical Properties of the Film and its Impact on the Diffusivity of Ions. Our Findings Indicate that Several Physical Factors Affect the Diffusivity of the Coating, Including the Crystal-Amorphous Structure that Depends on …


Efficient Navigation And Motion Control For Autonomous Forklifts In Smart Warehouses: Lspb Trajectory Planning And Mpc Implementation, Konchanok Vorasawad, Myoungkuk Park, Changwon Kim Nov 2023

Efficient Navigation And Motion Control For Autonomous Forklifts In Smart Warehouses: Lspb Trajectory Planning And Mpc Implementation, Konchanok Vorasawad, Myoungkuk Park, Changwon Kim

Michigan Tech Publications, Part 2

The rise of smart factories and warehouses has ushered in an era of intelligent manufacturing, with autonomous robots playing a pivotal role. This study focuses on improving the navigation and control of autonomous forklifts in warehouse environments. It introduces an innovative approach that combines a modified Linear Segment with Parabolic Blends (LSPB) trajectory planning with Model Predictive Control (MPC) to ensure efficient and secure robot movement. To validate the performance of our proposed path-planning method, MATLAB-based simulations were conducted in various scenarios, including rectangular and warehouse-like environments, to demonstrate the feasibility and effectiveness of the proposed method. The results demonstrated …


Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti Nov 2023

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti

Mechanical and Aerospace Engineering Faculty Publications

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number Re𝜏 = O(104) allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number St+ = 18–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We …


Real-Time Arrhythmia Detection Using Convolutional Neural Networks, Thong Vu, Tyler Petty, Kemal Yakut, Muhammad Usman, Wei Xue, Francis M. Haas, Robert A. Hirsh, Xinghui Zhao Nov 2023

Real-Time Arrhythmia Detection Using Convolutional Neural Networks, Thong Vu, Tyler Petty, Kemal Yakut, Muhammad Usman, Wei Xue, Francis M. Haas, Robert A. Hirsh, Xinghui Zhao

Henry M. Rowan College of Engineering Faculty Scholarship

Cardiovascular diseases, such as heart attack and congestive heart failure, are the leading cause of death both in the United States and worldwide. The current medical practice for diagnosing cardiovascular diseases is not suitable for long-term, out-of-hospital use. A key to long-term monitoring is the ability to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing studies only focus on the accuracy of arrhythmia classification, instead of runtime performance of the workflow. In this paper, we present our work on supporting real-time arrhythmic detection using convolutional neural networks, which take images of electrocardiogram (ECG) segments as input, and classify …


Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome Nov 2023

Stereoscopic-Based Mass Properties Estimation For Warhead Fragments, Alessia Nocerino, Katharine Larsen, Riccardo Bevilacqua, Elisabetta L. Jerome

Student Works

FRAGMENTATION characteristics such as spatial distribution, number of fragments, fragment velocity, and fragment mass can be used to characterize the lethality of a fragmenting weapon or any metal cased explosive [1,2]. However, most warhead tests and evaluations are limited to static arena testing, where fragment characteristics must be collected by hand. Recently, stereoscopic imaging techniques have been added to static arena tests. Using this method, position tracks can be collected for each fragment, and then velocity information can be found. This paper proposes a method to estimate the mass and moment of inertia using data collected by a stereoscopic imaging …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


Data And Cad Models Of Cyclic Testing Of Membrane Hinges For Use In Origami-Inspired Design, Mitchel Skinner Nov 2023

Data And Cad Models Of Cyclic Testing Of Membrane Hinges For Use In Origami-Inspired Design, Mitchel Skinner

ScholarsArchive Data

The following includes results and CAD models of cyclic testing of membrane hinges for use in origami-inspired design. The results include the number of cycles until both visual damage and complete failure occurred in 7 different membrane materials. The CAD models of the testing setup are also included.


Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy Nov 2023

Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

A novel integrated modelling framework is proposed as a set of coupled virtual tests to predict the residual compressive strength of carbon/epoxy composites after a lightning strike. Sequentially-coupled thermal-electric and thermo-mechanical models were combined with Compression After Lightning Strike (CAL) analyses, considering both thermal and mechanical lightning strike damage. The predicted lightning damage was validated using experimental images and X-ray Computed Tomography. Delamination and ply degradation information were mapped to a compression model, with a maximum stress criterion, using python scripts. Experimental data, in which artificial lightning strike and compression testing were performed, was used to assess the predictive capabilities …


Multicolor Dye-Based Flow Structure Visualization For Seal-Whisker Geometry Characterized By Computer Vision, Ondřej Ferčák, Kathleen Lyons, Christin T. Murphy, Kristina M. Kamensky, Raul Bayoan Cal Nov 2023

Multicolor Dye-Based Flow Structure Visualization For Seal-Whisker Geometry Characterized By Computer Vision, Ondřej Ferčák, Kathleen Lyons, Christin T. Murphy, Kristina M. Kamensky, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Pinniped vibrissae possess a unique and complex three-dimensional topography, which has beneficial fluid flow characteristics such as substantial reductions in drag, lift, and vortex induced vibration. To understand and leverage these effects, the downstream vortex dynamics must be studied. Dye visualization is a traditional qualitative method of capturing these downstream effects, specifically in comparative biological investigations where complex equipment can be prohibitive. High-fidelity numerical simulations or experimental particle image velocimetry (PIV) are commonplace for quantitative high-resolution flow measurements, but are computationally expensive, require costly equipment, and can have limited measurement windows. This study establishes a method for extracting quantitative data …


Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen Nov 2023

Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, the integration of femtosecond laser surface processing (FLSP) with copper hydroxide on hybrid surfaces was examined. The goal was to determine the impact on pool boiling enhancement. The samples for the investigation were fabricated by first functionalizing with FLSP, and the process was then followed by citric acid cleaning (CAC) to eliminate the oxides generated on the copper surface during the FLSP process. After the citric acid cleaning, the samples were immersed in ethanol and subjected to an ultrasonic bath for 25 minutes. This step was performed to eliminate any residual citric acid and loose particles. …


Analysis Of Bombyx Mori Silk And Polyimide Nanofibers, Sabrina Leseul Nov 2023

Analysis Of Bombyx Mori Silk And Polyimide Nanofibers, Sabrina Leseul

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a study on the properties of Bombyx Mori silk nanofibers and polyimide (PI) nanofibers. Firstly, a Bombyx Mori silk solution has been created with degummed silkworm cocoons in order to separate the fibroin and the sericin, the two main proteins of the silk. The fibroin was then centrifuged to remove insoluble particles and stored and 4°C before mixing with hexafluoroisopropanol (HFIP). On the second part, a polyimide solution, made with shavings of polyimide and N,N-dimethylformamide (DMF). Both solutions are then electrospun. Electrospinning parameters are studied. In this way, a part of my thesis has been dedicated to …


On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay Nov 2023

On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay

Mechanical and Aerospace Engineering Faculty Publications

Lightning strike damage can severely affect the thermo-mechanical performance of composite laminates. It is essential to quantify the effect of lightning strikes considering the inevitable influence of material and geometric uncertainties for ensuring the operational safety of aircraft. This paper presents an efficient support vector machine (SVM)-based surrogate approach coupled with computationally intensive transient thermal-electrical finite element simulations to quantify the uncertainty in lightning strike damage. The uncertainty in epoxy matrix thermal damage and electrical responses of unprotected carbon/epoxy composite laminates is probabilistically quantified considering the stochasticity in temperature-dependent multi-physical material properties and ply orientations. Further, the SVM models are …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …